Phy5646/AddAngularMomentumProb: Difference between revisions
Jump to navigation
Jump to search
PaulDragulin (talk | contribs) No edit summary |
PaulDragulin (talk | contribs) No edit summary |
||
Line 10: | Line 10: | ||
<math>\ = S_1^2|m_1m_2\rangle + S_2^2|m_1m_2\rangle + 2S_{1z}S_{2z}|m_1m_2\rangle+S_{1+}S_{2-}|m_1m_2\rangle+S_{1-}S_{2+}|m_1m_2\rangle </math> | <math>\ = S_1^2|m_1m_2\rangle + S_2^2|m_1m_2\rangle + 2S_{1z}S_{2z}|m_1m_2\rangle+S_{1+}S_{2-}|m_1m_2\rangle+S_{1-}S_{2+}|m_1m_2\rangle </math> | ||
<math>\ = \hbar^2 \frac{1}{2}\left(\frac{1}{2}+1 \right)|m_1m_2\rangle + \hbar^2\frac{1}{2}\left(\frac{1}{2}+1\right)|m_1m_2\rangle + \hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1+1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1-1 \right)}|m_1+1;m_2-1\rangle</math> | <math>\ = \hbar^2 \frac{1}{2}\left(\frac{1}{2}+1 \right)|m_1m_2\rangle + \hbar^2\frac{1}{2}\left(\frac{1}{2}+1\right)|m_1m_2\rangle + 2\hbar^2m_1m_2|m_1m_2\rangle +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1+1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1-1 \right)}|m_1+1;m_2-1\rangle</math> | ||
<math>\ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle </math> | <math>\ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle </math> | ||
<math>\ \Rightarrow S^2|m_1m_2\rangle = \hbar^2 \left(\frac{3}{2}|m_1m_2\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}|m_1+1;m_2-1\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}|m_1-1;m_2+1\rangle\right) | <math>\ \Rightarrow S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)|m_1m_2\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}|m_1+1;m_2-1\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}|m_1-1;m_2+1\rangle\right)</math> | ||
3.) Now plug in appropriate values of <math>\ m_1 </math> and <math>\ m_2 </math>: | |||
</math> | |||
Revision as of 20:56, 25 April 2010
Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:
Express as a matrix for two spin-1/2 particles in the direct product basis.
1.) First express in terms of , , , , and :
2.) Then act with this on direct product state :
3.) Now plug in appropriate values of and :