Phy5646/AddAngularMomentumProb: Difference between revisions
Jump to navigation
Jump to search
PaulDragulin (talk | contribs) No edit summary |
PaulDragulin (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>: | 3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>: | ||
<math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right) | <math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)</math> | ||
<math>\Rightarrow \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1m_1'\right)\left(\frac{3}{2}-m_2m_2'\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1m_1'\right)\left(\frac{3}{2}-m_2m_2'\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right) | |||
</math> | </math> | ||
3.) Now plugging in appropriate values of <math>\ m_1, m_2, m_1' </math> and <math>\ m_2' </math>: | |||
<math>\ \langle 1/2;1/2|S^2|1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{1}{2}\right)+0+0\right) = 2\hbar^2</math> | |||
<math>\ \langle -1/2;-1/2|S^2|-1/2;-1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = 2\hbar^2</math> | |||
Revision as of 22:30, 25 April 2010
Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:
Express as a matrix for two spin-1/2 particles in the direct product basis.
1.) First express in terms of , , , , and :
2.) Then act with this on direct product state :
3.) Now acting on the left with :
3.) Now plugging in appropriate values of and :
</math>