Phy5646/AddAngularMomentumProb: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>:
3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>:


<math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)
<math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)</math>
 
 
 
 
 
 


<math>\Rightarrow \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1m_1'\right)\left(\frac{3}{2}-m_2m_2'\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1m_1'\right)\left(\frac{3}{2}-m_2m_2'\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)
</math>
</math>


3.) Now plugging in appropriate values of <math>\ m_1, m_2, m_1' </math> and <math>\ m_2' </math>:


<math>\ \langle 1/2;1/2|S^2|1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{1}{2}\right)+0+0\right) = 2\hbar^2</math>
<math>\ \langle -1/2;-1/2|S^2|-1/2;-1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = 2\hbar^2</math>


3.) Now plug in appropriate values of <math>\ m_1 </math> and <math>\ m_2 </math>:
<math>\ S^2 |1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{4}\right)|1/2;1/2\rangle + 0 + 0 \right) = 2\hbar^2|1/2;1/2\rangle</math> where <math>\ |3/2;-1/2\rangle = |-1/2;3/2\rangle = 0</math>.
Similarly, <math>\ S^2 \langle-1/2;-1/2| =





Revision as of 22:30, 25 April 2010

Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:

Express as a matrix for two spin-1/2 particles in the direct product basis.

1.) First express in terms of , , , , and :

2.) Then act with this on direct product state :

3.) Now acting on the left with :

3.) Now plugging in appropriate values of and :



</math>