Phy5646/AddAngularMomentumProb: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:
<math>\ \langle 1/2;1/2|S^2|1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{1}{2}\right)+0+0\right) = 2\hbar^2</math>
<math>\ \langle 1/2;1/2|S^2|1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{1}{2}\right)+0+0\right) = 2\hbar^2</math>
<math>\ \langle -1/2;-1/2|S^2|-1/2;-1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = 2\hbar^2</math>
<math>\ \langle -1/2;-1/2|S^2|-1/2;-1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = 2\hbar^2</math>
<math> \langle 1/2;-1/2|S^2|1/2;-1/2\rangle = \langle 1/2;1/2|S^2|1/2;1/2\rangle =


<math> \langle 1/2;-1/2|S^2|1/2;-1/2\rangle = \left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = \hbar^2</math>


<math> \langle -1/2;1/2|S^2|-1/2;1/2\rangle = \left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{1}{2}\right)+0+0\right) = \hbar^2</math>
<math> \langle -1/2;1/2|S^2|1/2;1/2\rangle = \langle 1/2;1/2|S^2|-1/2;1/2\rangle = \left(0+0+0\right) = 0</math>





Revision as of 23:27, 25 April 2010

Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:

Express as a matrix for two spin-1/2 particles in the direct product basis.

1.) First express in terms of , , , , and :

2.) Then act with this on direct product state :

3.) Now acting on the left with :

3.) Now plugging in appropriate values of and :


</math>