Talk:Phy5646: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
Ans: | Ans: | ||
<math>\mathcal{H}=\frac{1}{2m}\left(p-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\ | <math>\mathcal{H}=\frac{1}{2m}\left(p-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\lambda_k}}\hbar\omega_{k}\left(\hat{a}_{k\hat{\lambda_k}}^{\dagger}\hat{a}_{k\hat{\lambda_k}}+\frac{1}{2}\right) </math> | ||
where | where | ||
<math>\mathbf{\hat{A}(r)}=\frac{1}{\sqrt{V}}\sum_{k,\ | <math>\mathbf{\hat{A}(r)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda_k}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\lambda_k}}\hat{\lambda_k}e^{ik\cdot r}+\hat{a}^{\dagger}_{k,\hat{\lambda_k}}\hat{\lambda^*_k}e^{-ik\cdot r}\right)\right]</math> | ||
Line 23: | Line 23: | ||
with | with | ||
<math>\mathbf{A(r,t)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\ | <math>\mathbf{A(r,t)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\lambda_k}}\hat{\lambda}e^{ik\cdot r-i\omega_{k} t}+\hat{a}^{\dagger}_{k,\hat{\lambda}}\hat{\lambda^*}e^{-ik\cdot r+i\omega_{k}t}\right)\right]</math> | ||
Since the system has rotational symmetry, so the internal eigenstate is <math>|n,l,m\rangle</math>, where <math>|n\rangle=|e\rangle,|i\rangle,|g\rangle</math>. The initial photon field is null <math>|\phi\rangle</math>. Initially <math>l=0</math>, so <math>m=0</math>, so | Since the system has rotational symmetry, so the internal eigenstate is <math>|n,l,m\rangle</math>, where <math>|n\rangle=|e\rangle,|i\rangle,|g\rangle</math>. The initial photon field is null <math>|\phi\rangle</math>. Initially <math>l=0</math>, so <math>m=0</math>, so intial state is <math>|\chi_0\rangle=|e,0,0;\phi\rangle</math> and final state is <math>|g,0,0;1_{\lambda ,k },1_{\lambda ',k' }\rangle</math>. | ||
<math>\langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }|\chi(t)\rangle\approx \frac{1}{i\hbar}\int_{-\infty}^{t}dt' \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' } |\mathcal{H}'_I(t') |e,0,0;\phi\rangle+ | |||
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' } |\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|e,0,0;\phi\rangle </math> | |||
<math>\langle | where to change from state <math> |e\rangle</math> to <math>|i\rangle</math> to <math>|g\rangle</math>, we need two momentum operator, so the first term must be zero. And so | ||
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|\ | |||
<math>\begin{align} & \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }|\chi(t)\rangle \\ | |||
&\approx | |||
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' } |\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\ | |||
&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' } |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k } \rangle \langle i,1,m;1_{\lambda ,k }| \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\ | |||
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \langle g,0,0|p|i,1,m\rangle \cdot | |||
\end{align} </math> |
Revision as of 11:07, 29 April 2010
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state with to an intermediate state with emitting a photon with wave vector , and then to the ground state with emitting a photon with wave vector . Find the probability that the angle between the two wavevectors to be .
Ans:
where
Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,
where
with
Since the system has rotational symmetry, so the internal eigenstate is , where . The initial photon field is null . Initially , so , so intial state is and final state is .
where to change from state to to , we need two momentum operator, so the first term must be zero. And so