Talk:Phy5646: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 23: Line 23:
with  
with  


<math>\mathbf{A(r,t)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\lambda_k}}\hat{\lambda}e^{ik\cdot r-i\omega_{k} t}+\hat{a}^{\dagger}_{k,\hat{\lambda}}\hat{\lambda^*}e^{-ik\cdot r+i\omega_{k}t}\right)\right]</math>
<math>\mathbf{A(r,t)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda_k}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\lambda_k}}\hat{\lambda_k}e^{ik\cdot r-i\omega_{k} t}+\hat{a}^{\dagger}_{k,\hat{\lambda_k}}\hat{\lambda^*_k}e^{-ik\cdot r+i\omega_{k}t}\right)\right]</math>


Since the system has rotational symmetry, so the internal eigenstate is <math>|n,l,m\rangle</math>, where <math>|n\rangle=|e\rangle,|i\rangle,|g\rangle</math>. The initial photon field is null <math>|\phi\rangle</math>. Initially <math>l=0</math>, so <math>m=0</math>, so intial state is <math>|\chi_0\rangle=|e,0,0;\phi\rangle</math> and  final state is <math>|g,0,0;1_{\lambda ,k },1_{\lambda ',k' }\rangle</math>.  
Since the system has rotational symmetry, so the internal eigenstate is <math>|n,l,m\rangle</math>, where <math>|n\rangle=|e\rangle,|i\rangle,|g\rangle</math>. The initial photon field is null <math>|\phi\rangle</math>. Initially <math>l=0</math>, so <math>m=0</math>, so intial state is <math>|\chi_0\rangle=|e,0,0;\phi\rangle</math> and  final state is <math>|g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }\rangle</math>. Therefore




<math>\langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }|\chi(t)\rangle\approx  \frac{1}{i\hbar}\int_{-\infty}^{t}dt'  \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' } |\mathcal{H}'_I(t')  |e,0,0;\phi\rangle+
<math>\langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }|\chi(t)\rangle\approx  \frac{1}{i\hbar}\int_{-\infty}^{t}dt'  \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' } |\mathcal{H}'_I(t')  |e,0,0;\phi\rangle+
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''  \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }  |\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|e,0,0;\phi\rangle </math>
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''  \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|e,0,0;\phi\rangle </math>


where to change from state <math> |e\rangle</math> to <math>|i\rangle</math> to <math>|g\rangle</math>, we need two momentum operator, so the first term must be zero. And so  
where to change from state <math> |e\rangle</math> to <math>|i\rangle</math> to <math>|g\rangle</math>, we need two momentum operator, so the first term must be zero. And so  


<math>\begin{align} & \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }|\chi(t)\rangle \\
<math>\begin{align} & \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'} }|\chi(t)\rangle \\
&\approx  
&\approx  


\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''  \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }   |\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''  \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
 
&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda ,k },1_{\lambda ',k' }  |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k }  \rangle  \langle i,1,m;1_{\lambda ,k }|  \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \langle g,0,0|p|i,1,m\rangle \cdot


&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k }  \rangle  \langle i,1,m;1_{\lambda ,k }|  \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}}  \langle i,1,m|p|e,0,0\rangle \cdot \hat{\lambda^{*}_{k}}
   \end{align}  </math>
   \end{align}  </math>

Revision as of 11:26, 29 April 2010

Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state with to an intermediate state with emitting a photon with wave vector , and then to the ground state with emitting a photon with wave vector . Find the probability that the angle between the two wavevectors to be .

Ans:

where



Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,

where

with

Since the system has rotational symmetry, so the internal eigenstate is , where . The initial photon field is null . Initially , so , so intial state is and final state is . Therefore


where to change from state to to , we need two momentum operator, so the first term must be zero. And so