Talk:Phy5646: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 39: Line 39:


&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k }  \rangle  \langle i,1,m;1_{\lambda ,k }|  \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k }  \rangle  \langle i,1,m;1_{\lambda ,k }|  \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \langle i,1,m|p|e,0,0\rangle \cdot \hat{\lambda^{*}_{k}}
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \left(\langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \right)\left( \langle i,1,m|p|e,0,0\rangle\cdot \hat{\lambda^{*}_{k}}\right  )
   \end{align}  </math>
   \end{align}  </math>

Revision as of 11:28, 29 April 2010

Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state with to an intermediate state with emitting a photon with wave vector , and then to the ground state with emitting a photon with wave vector . Find the probability that the angle between the two wavevectors to be .

Ans:

where



Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,

where

with

Since the system has rotational symmetry, so the internal eigenstate is , where . The initial photon field is null . Initially , so , so intial state is and final state is . Therefore


where to change from state to to , we need two momentum operator, so the first term must be zero. And so