Time: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
\end{pmatrix}</math> | \end{pmatrix}</math> | ||
For the <math>S_x</math> operator we have | |||
<math> S_{x} = \frac{\hbar}{2}\begin{pmatrix} | |||
0 & \sqrt{2} & 0 \\ | |||
\sqrt{2} & 0 & \sqrt{2} \\ | |||
0 & \sqrt{2} & 0\\ | |||
\end{pmatrix}</math> <math>\Rightarrow</math> | |||
<math> S_{x}^{2} = {\hbar}^2\begin{pmatrix} | |||
\frac{1}{2} & 0 & \frac{1}{2} \\ | |||
0 & 1 & 0 \\ | |||
\frac{1}{2}& 0 & \frac{1}{2}\\ | |||
\end{pmatrix}</math> <math>\Rightarrow</math> | |||
<math> S_{y} = \frac{\hbar}{2i}\begin{pmatrix} | |||
0 & \sqrt{2} & 0 \\ | |||
-\sqrt{2} & 0 & \sqrt{2} \\ | |||
0 & -\sqrt{2} & 0\\ | |||
\end{pmatrix}</math> | |||
<math> S_{y}^{2} = {\hbar}^2\begin{pmatrix} | |||
\frac{1}{2} & 0 & -\frac{1}{2} \\ | |||
0 & 1 & 0 \\ | |||
-\frac{1}{2}& 0 & \frac{1}{2}\\ | |||
\end{pmatrix}</math> | |||
Thus the Hamiltonian can be represented by the matrix | |||
<math> H = {\hbar}^2\begin{pmatrix} | |||
A & 0 & B \\ | |||
0 & 0 & 0 \\ | |||
B & 0 & A\\ | |||
\end{pmatrix}</math> | |||
To find the energy eigenvalues we have to solve the secular equation | |||
<math>det(H - \lambda I) = 0 </math> <math>\Rightarrow</math> <math> det \begin{pmatrix} | |||
A{\hbar}^2 - \lambda & 0 & B{\hbar}^2 \\ | |||
0 & - \lambda & 0 \\ | |||
B{\hbar}^2 & 0 & A{\hbar}^2 - \lambda\\ | |||
\end{pmatrix} = 0</math> | |||
<math>\Rightarrow</math> <math> \lambda_1 = 0 </math>, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math> |
Revision as of 23:25, 30 April 2010
For a spin 1 system l = 1 and m = -1 , 0 , 1. For the operator we have
So
For the operator we have
Thus the Hamiltonian can be represented by the matrix
To find the energy eigenvalues we have to solve the secular equation
, ,