Time: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
    
    
\end{pmatrix}</math>
\end{pmatrix}</math>
For the <math>S_x</math> operator we have
<math> S_{x} = \frac{\hbar}{2}\begin{pmatrix}
  0 & \sqrt{2} & 0 \\
  \sqrt{2} & 0 & \sqrt{2} \\
  0 & \sqrt{2} & 0\\
 
\end{pmatrix}</math> <math>\Rightarrow</math>
<math> S_{x}^{2} = {\hbar}^2\begin{pmatrix}
  \frac{1}{2} & 0 & \frac{1}{2} \\
  0 & 1 & 0 \\
  \frac{1}{2}& 0 & \frac{1}{2}\\
 
\end{pmatrix}</math> <math>\Rightarrow</math>
<math> S_{y} = \frac{\hbar}{2i}\begin{pmatrix}
  0 & \sqrt{2} & 0 \\
  -\sqrt{2} & 0 & \sqrt{2} \\
  0 & -\sqrt{2} & 0\\
 
\end{pmatrix}</math>
<math> S_{y}^{2} = {\hbar}^2\begin{pmatrix}
  \frac{1}{2} & 0 & -\frac{1}{2} \\
  0 & 1 & 0 \\
  -\frac{1}{2}& 0 & \frac{1}{2}\\
 
\end{pmatrix}</math>
Thus the Hamiltonian can be represented by the matrix
<math> H = {\hbar}^2\begin{pmatrix}
  A & 0 & B \\
  0 & 0 & 0 \\
  B & 0 & A\\
 
\end{pmatrix}</math>
To find the energy eigenvalues we have to solve the secular equation
<math>det(H - \lambda I) = 0 </math> <math>\Rightarrow</math> <math> det \begin{pmatrix}
  A{\hbar}^2 - \lambda & 0 & B{\hbar}^2 \\
  0 & - \lambda & 0 \\
  B{\hbar}^2 & 0 & A{\hbar}^2 - \lambda\\
 
\end{pmatrix} = 0</math>
<math>\Rightarrow</math> <math>  \lambda_1 = 0 </math>, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math>

Revision as of 23:25, 30 April 2010

For a spin 1 system l = 1 and m = -1 , 0 , 1. For the operator we have

So


For the operator we have



Thus the Hamiltonian can be represented by the matrix

To find the energy eigenvalues we have to solve the secular equation

, ,