|
|
Line 68: |
Line 68: |
| \end{pmatrix} = 0</math> | | \end{pmatrix} = 0</math> |
|
| |
|
| <math>\Rightarrow</math> <math> \lambda_1 = 0 </math>, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math> | | <math>\Rightarrow</math> <math>\lambda_1</math> = 0, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math> |
Revision as of 23:26, 30 April 2010
For a spin 1 system l = 1 and m = -1 , 0 , 1. For the operator
we have
So
For the
operator we have
Thus the Hamiltonian can be represented by the matrix
To find the energy eigenvalues we have to solve the secular equation
= 0,
,