Time: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 68: Line 68:
\end{pmatrix} = 0</math>
\end{pmatrix} = 0</math>


<math>\Rightarrow</math> <math>\lambda_1</math> = 0, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math>
<math>\Rightarrow</math> <math> \lambda_{1} </math> = 0, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math>
 
To find the eigenstate <math>|n_(\lambda)</math> that corresponds to the eigenvalue <math>\lambda</math> we have to solve the following equation:
 
 
<math> {\hbar}^2\begin{pmatrix}
  A & 0 & B \\
  0 & 0 & 0 \\
  B & 0 & A\\
 
\end{pmatrix} \begin{pmatrix}
a\\
b\\
c
\end{pmatrix} \Rightarrow  \lambda _{c} \begin{pmatrix}
a\\
b\\
c
\end{pmatrix}</math>
 
For <math>\lambda_1 = 0</math>
 
<math> {\hbar}^2\begin{pmatrix}
  A & 0 & B \\
  0 & 0 & 0 \\
  B & 0 & A\\
 
\end{pmatrix} \begin{pmatrix}
a\\
b\\
c
\end{pmatrix}= 0 \Rightarrow a= 0 , c= 0</math> 
 
<math>|n_0 \rangle = \begin{pmatrix}
0\\
b \\
0
\end{pmatrix} (normalizing ) \Rightarrow |n_0 \rangle = \begin{pmatrix}
0\\
1 \\
0
\end{pmatrix}\Rightarrow  |n_0 \rangle = |1 , 0 \rangle</math>
 
In the same way for <math>\lambda_2 = {\hbar}^2(A + B)</math>
 
<math> \begin{pmatrix}
  A & 0 & B \\
  0 & 0 & 0 \\
  B & 0 & A\\
 
\end{pmatrix} \begin{pmatrix}
a\\
b\\
c
\end{pmatrix}= (A+B)\begin{pmatrix}
a\\
b\\
c
\end{pmatrix} \Rightarrow a= c , b= 0</math> 
 
 
 
<math>|n_{A+B} \rangle = \begin{pmatrix}
c\\
0 \\
c
\end{pmatrix} (normalizing ) \Rightarrow |n_0 \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix}
1\\
0 \\
1
\end{pmatrix}\Rightarrow  |n_{A+B} \rangle = \frac{1}{\sqrt{2}}|1 , +1 \rangle + \frac{1}{\sqrt{2}}|1 , -1 \rangle</math>
 
For

Revision as of 23:43, 30 April 2010

For a spin 1 system l = 1 and m = -1 , 0 , 1. For the operator we have

So


For the operator we have



Thus the Hamiltonian can be represented by the matrix

To find the energy eigenvalues we have to solve the secular equation

= 0, ,

To find the eigenstate that corresponds to the eigenvalue we have to solve the following equation:


For

In the same way for


For