Time: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 68: | Line 68: | ||
\end{pmatrix} = 0</math> | \end{pmatrix} = 0</math> | ||
<math>\Rightarrow</math> <math>\ | <math>\Rightarrow</math> <math> \lambda_{1} </math> = 0, <math>\lambda_2 = {\hbar}^2(A + B)</math>, <math>\lambda_3 = {\hbar}^2(A - B)</math> | ||
To find the eigenstate <math>|n_(\lambda)</math> that corresponds to the eigenvalue <math>\lambda</math> we have to solve the following equation: | |||
<math> {\hbar}^2\begin{pmatrix} | |||
A & 0 & B \\ | |||
0 & 0 & 0 \\ | |||
B & 0 & A\\ | |||
\end{pmatrix} \begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix} \Rightarrow \lambda _{c} \begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix}</math> | |||
For <math>\lambda_1 = 0</math> | |||
<math> {\hbar}^2\begin{pmatrix} | |||
A & 0 & B \\ | |||
0 & 0 & 0 \\ | |||
B & 0 & A\\ | |||
\end{pmatrix} \begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix}= 0 \Rightarrow a= 0 , c= 0</math> | |||
<math>|n_0 \rangle = \begin{pmatrix} | |||
0\\ | |||
b \\ | |||
0 | |||
\end{pmatrix} (normalizing ) \Rightarrow |n_0 \rangle = \begin{pmatrix} | |||
0\\ | |||
1 \\ | |||
0 | |||
\end{pmatrix}\Rightarrow |n_0 \rangle = |1 , 0 \rangle</math> | |||
In the same way for <math>\lambda_2 = {\hbar}^2(A + B)</math> | |||
<math> \begin{pmatrix} | |||
A & 0 & B \\ | |||
0 & 0 & 0 \\ | |||
B & 0 & A\\ | |||
\end{pmatrix} \begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix}= (A+B)\begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix} \Rightarrow a= c , b= 0</math> | |||
<math>|n_{A+B} \rangle = \begin{pmatrix} | |||
c\\ | |||
0 \\ | |||
c | |||
\end{pmatrix} (normalizing ) \Rightarrow |n_0 \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} | |||
1\\ | |||
0 \\ | |||
1 | |||
\end{pmatrix}\Rightarrow |n_{A+B} \rangle = \frac{1}{\sqrt{2}}|1 , +1 \rangle + \frac{1}{\sqrt{2}}|1 , -1 \rangle</math> | |||
For |
Revision as of 23:43, 30 April 2010
For a spin 1 system l = 1 and m = -1 , 0 , 1. For the operator we have
So
For the operator we have
Thus the Hamiltonian can be represented by the matrix
To find the energy eigenvalues we have to solve the secular equation
= 0, ,
To find the eigenstate that corresponds to the eigenvalue we have to solve the following equation:
For
In the same way for
For