Time: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 140: | Line 140: | ||
\end{pmatrix}\Rightarrow |n_{A+B} \rangle = \frac{1}{\sqrt{2}}|1 , +1 \rangle + \frac{1}{\sqrt{2}}|1 , -1 \rangle</math> | \end{pmatrix}\Rightarrow |n_{A+B} \rangle = \frac{1}{\sqrt{2}}|1 , +1 \rangle + \frac{1}{\sqrt{2}}|1 , -1 \rangle</math> | ||
For | In the same way for <math>\lambda_2 = {\hbar}^2(A + B)</math> | ||
<math> \begin{pmatrix} | |||
A & 0 & B \\ | |||
0 & 0 & 0 \\ | |||
B & 0 & A\\ | |||
\end{pmatrix} \begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix}= (A+B)\begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix} \Rightarrow a= c , b= 0</math> | |||
<math>|n_{A+B} \rangle = \begin{pmatrix} | |||
c\\ | |||
0 \\ | |||
c | |||
\end{pmatrix} (normalizing ) \Rightarrow |n_{A+B} \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} | |||
1\\ | |||
0 \\ | |||
1 | |||
\end{pmatrix}\Rightarrow |n_{A+B} \rangle = \frac{1}{\sqrt{2}}|1 , +1 \rangle + \frac{1}{\sqrt{2}}|1 , -1 \rangle</math> | |||
For <math>\lambda_3 = {\hbar}^2(A - B)</math> | |||
<math> \begin{pmatrix} | |||
A & 0 & B \\ | |||
0 & 0 & 0 \\ | |||
B & 0 & A\\ | |||
\end{pmatrix} \begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix}= (A - B)\begin{pmatrix} | |||
a\\ | |||
b\\ | |||
c | |||
\end{pmatrix} \Rightarrow a= -c , b= 0</math> | |||
<math>|n_{A-B} \rangle = \begin{pmatrix} | |||
c\\ | |||
0 \\ | |||
-c | |||
\end{pmatrix} (normalizing ) \Rightarrow |n_{A-B}\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} | |||
1\\ | |||
0 \\ | |||
-1 | |||
\end{pmatrix}\Rightarrow |n_{A-B} \rangle = \frac{1}{\sqrt{2}}|1 , +1 \rangle - \frac{1}{\sqrt{2}}|1 , -1 \rangle</math> | |||
Now we are going to check if the Hamiltonian is invariant under time reversal | |||
<math>Insert formula here</math> |
Revision as of 23:50, 30 April 2010
For a spin 1 system l = 1 and m = -1 , 0 , 1. For the operator we have
So
For the operator we have
Thus the Hamiltonian can be represented by the matrix
To find the energy eigenvalues we have to solve the secular equation
= 0, ,
To find the eigenstate that corresponds to the eigenvalue we have to solve the following equation:
For
In the same way for
In the same way for
For
Now we are going to check if the Hamiltonian is invariant under time reversal