Solution to Set 2: Difference between revisions
Jump to navigation
Jump to search
(Relabeling sections) |
No edit summary |
||
Line 1: | Line 1: | ||
==Problem 1== | ==Problem 1== | ||
=Part a= | |||
<math>(P+{{aN^2}\over v^2})(v-Nb)=NkT</math> | |||
say <math>V={v\over N}</math> | |||
<math>Pv+{aN^2v\over v^2}-PNb-{aN^2Nb\over v^2}-NkT=0</math> | |||
by multiplying both sides by <math>v^2</math> we get | |||
<math>{Pv^3}+aN^2V-PNbv^2-aN^3b-NkTv^2=0</math> | |||
<math> | by dividing both sides by <math>PN^2</math> we get | ||
<math>{v^3\over N^3}+{av\over PN}-{bv^2\over N^2}-{ab\over P}-{kTv^2\over PN^2}=0</math> | |||
so | |||
<math>V^3+V{a\over P}-V^2b-{ab\over P}-V^2{kT\over P}=0</math> | |||
and combining terms we get | |||
<math>V^3-V^2(b+{kT\over P})+V{a\over P}-{ab\over P}=0</math> | |||
<math> | |||
Revision as of 16:47, 29 April 2011
Problem 1
Part a
say
by multiplying both sides by we get
by dividing both sides by we get
so
and combining terms we get