Solution to Set 2: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
=Problem 1= | |||
=Part a= | ==Part a== | ||
<math>(P+{{aN^2}\over v^2})(v-Nb)=NkT</math> | <math>(P+{{aN^2}\over v^2})(v-Nb)=NkT</math> | ||
Line 24: | Line 24: | ||
<math>V^3-V^2(b+{kT\over P})+V{a\over P}-{ab\over P}=0</math> | <math>V^3-V^2(b+{kT\over P})+V{a\over P}-{ab\over P}=0</math> | ||
==part b== | |||
<math>P={nRT\over (v-nb)^2}-{an^2\over v^2}</math> | |||
Taking the derivative we get | |||
<math>{dP\over dv}={-nRT\over v-nb}+{2an^2\over v^3}=0</math> | |||
Multiply the derivative by <math>{-2\over v-nb}</math> to get | |||
<math>{2nRT\over (v-nb)^3}-{4an^2\over v^3(v-nb)}=0</math> | |||
Taking the derivative again we get | |||
<math>{d^2P\over d^2v}={2nRT\over (v-nb)^3}-{6an^2\over v^4}=0</math> | |||
By setting the derivatives equal to each other we get | |||
<math>{2nRT\over (v-nb)^3}-{4an^2\over v^3(v-nb)}={2nRT\over (v-nb)^3}-{6an^2\over v^4}</math> | |||
Which reduces to | |||
<math>6(v-nb)=4v</math> | |||
<math>6v-6nb=4v</math> | |||
<math>6nb=2v</math> | |||
<math>3nb=v_c</math> | |||
Now we can say | |||
<math>{-nRT\over v_c-nb}+{2an^2\over v_c^3}=0</math> | |||
Plugging <math>v_c</math> in we get | |||
<math>{-nRT\over (3nb-bn)^2}+{2an^2\over (3nb)^3}=0</math> | |||
Now we solve for T | |||
<math>{-nRT\over (2bn)^2}+{2an^2\over 27n^3b^3}=0</math> | |||
<math>{-RT\over 4b^2n}+{2a\over 27nb^3}=0</math> | |||
<math>{2a\over 27nb^3}={RT\over 4b^2n}</math> | |||
<math>{8a\over 27b}=RT</math> | |||
<math>{8a\over 27bR}=T_c</math> | |||
Now <math>T_c</math> and <math>v_c</math> can be plugged in to find <math>P_c</math> | |||
say | |||
<math>P={nR{(8a\over 27bR)}\over 3nb-nb}-{an^2\over (3nb)^2}</math> |
Revision as of 13:10, 30 April 2011
Problem 1
Part a
say
by multiplying both sides by we get
by dividing both sides by we get
so
and combining terms we get
part b
Taking the derivative we get
Multiply the derivative by to get
Taking the derivative again we get
By setting the derivatives equal to each other we get
Which reduces to
Now we can say
Plugging in we get
Now we solve for T
Now and can be plugged in to find
say