Solution to Set 2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Problem 1==
=Problem 1=


=Part a=
==Part a==


<math>(P+{{aN^2}\over v^2})(v-Nb)=NkT</math>
<math>(P+{{aN^2}\over v^2})(v-Nb)=NkT</math>
Line 24: Line 24:


<math>V^3-V^2(b+{kT\over P})+V{a\over P}-{ab\over P}=0</math>
<math>V^3-V^2(b+{kT\over P})+V{a\over P}-{ab\over P}=0</math>
==part b==
<math>P={nRT\over (v-nb)^2}-{an^2\over v^2}</math>
Taking the derivative we get
<math>{dP\over dv}={-nRT\over v-nb}+{2an^2\over v^3}=0</math>
Multiply the derivative by <math>{-2\over v-nb}</math> to get
<math>{2nRT\over (v-nb)^3}-{4an^2\over v^3(v-nb)}=0</math>
Taking the derivative again we get
<math>{d^2P\over d^2v}={2nRT\over (v-nb)^3}-{6an^2\over v^4}=0</math>
By setting the derivatives equal to each other we get
<math>{2nRT\over (v-nb)^3}-{4an^2\over v^3(v-nb)}={2nRT\over (v-nb)^3}-{6an^2\over v^4}</math>
Which reduces to
<math>6(v-nb)=4v</math>
<math>6v-6nb=4v</math>
<math>6nb=2v</math>
<math>3nb=v_c</math>
Now we can say
<math>{-nRT\over v_c-nb}+{2an^2\over v_c^3}=0</math>
Plugging <math>v_c</math> in we get
<math>{-nRT\over (3nb-bn)^2}+{2an^2\over (3nb)^3}=0</math>
Now we solve for T
<math>{-nRT\over (2bn)^2}+{2an^2\over 27n^3b^3}=0</math>
<math>{-RT\over 4b^2n}+{2a\over 27nb^3}=0</math>
<math>{2a\over 27nb^3}={RT\over 4b^2n}</math>
<math>{8a\over 27b}=RT</math>
<math>{8a\over 27bR}=T_c</math>
Now <math>T_c</math> and <math>v_c</math> can be plugged in to find <math>P_c</math>
say
<math>P={nR{(8a\over 27bR)}\over 3nb-nb}-{an^2\over (3nb)^2}</math>

Revision as of 13:10, 30 April 2011

Problem 1

Part a

say

by multiplying both sides by we get

by dividing both sides by we get

so

and combining terms we get

part b

Taking the derivative we get

Multiply the derivative by to get

Taking the derivative again we get

By setting the derivatives equal to each other we get

Which reduces to


Now we can say

Plugging in we get

Now we solve for T


Now and can be plugged in to find

say