Harmonic Oscillator: Integration Over Fluctuations: Difference between revisions
(New page: Now, let's evaluate the path integral: <math>A=A(t)=\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}</math> ...) |
No edit summary |
||
Line 1: | Line 1: | ||
Now, let's evaluate the path integral: | Now, let's evaluate the [[Feynman path integral evaluation of the propagator|path integral]]<nowiki/>: | ||
<math>A=A(t)=\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}</math> <br/> | <math>A=A(t)=\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}</math> <br/> | ||
Line 61: | Line 61: | ||
e^{\frac{i}{\hbar}\left(\frac{m\omega}{2sin(\omega t)}((x^2+x_0^2)cos(\omega t)-2xx_0)\right)} | e^{\frac{i}{\hbar}\left(\frac{m\omega}{2sin(\omega t)}((x^2+x_0^2)cos(\omega t)-2xx_0)\right)} | ||
</math> | </math> | ||
==Reference== | |||
For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491. | For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491. |
Revision as of 14:34, 6 July 2011
Now, let's evaluate the path integral:
Note that the integrand is taken over all possible trajectory starting at point at time , ending at point at time .
Expanding this integral,
where .
Expanding the path trajectory in Fourier series, we have
we may express in the form
where C is a constant independent of the frequency which comes from the Jacobian of the transformation. The important point is that it does not depend on the frequency . Thus, evaluating the integral of,
where C' is a constant directly related to C and still independent of the frequency of motion. Since the first product series in this final expression is also independent of the frequency of motion, we can absorb it into our constant C' to have a new constant, C. Simplifying further,
In the limit , we already know that
Thus,
and
Reference
For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491.