Self-consistent Hartree-Fock approach to Phase Transitions: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 14: Line 14:
Consider a system of n interacting fermions. The Hamiltonian is expressed as
Consider a system of n interacting fermions. The Hamiltonian is expressed as


<math>H=\underset{\alpha,\alpha'}{\sum b_{\alpha}^{\dagger}\left\langle \alpha\left|H_{0}\right|\alpha'\right\rangle b_{\alpha'}+\frac{1}{2}\underset{\alpha\beta\alpha'\beta'}{\sum b_{\alpha}^{\dagger}b_{\beta}^{\dagger}\left\langle \alpha\beta\left|V\right|\alpha'\beta'\right\rangle b_{\beta'}b_{\alpha'}}}</math>
<math>H=\underset{\alpha\alpha'}{\sum}b_{\alpha}^{\dagger}\left\langle \alpha\left|H_{0}\right|\alpha'\right\rangle b_{\alpha'}+\frac{1}{2}\underset{\alpha\alpha'\beta\beta'}{\sum}b_{\alpha}^{\dagger}b_{\beta}^{\dagger}\left\langle \alpha\beta\left|V\right|\alpha'\beta'\right\rangle b_{\beta'}b_{\alpha'}</math>
 
The independent particle state can be written as
 
<math>\left|\psi_{0}\right\rangle =a_{n}^{\dagger}a_{n-1}^{\dagger}
...a_{2}^{\dagger}a_{1}^{\dagger}\left|0\right\rangle</math>
 
In this basis,
 
<math>H=\underset{i,j}{\sum}a_{i}^{\dagger}\left\langle i\left|H_{0}\right|j\right\rangle a_{j}+\frac{1}{2}\underset{qrst}{\sum a_{q}^{\dagger}a_{r}^{\dagger}\left\langle qr|V|ts\right\rangle a_{s}a_{t}}</math>
 
The variation of state <math>\left|\psi_{0}\right\rangle</math> is given by a linear combination
 
<math>\delta\psi_{jk}=\varepsilon_{jk}a_{j}^{\dagger}a_{k}\left|\psi_{0}\right\rangle</math>
 
The “best” state <math>\left|\psi_{0}\right\rangle</math> should minimise the ground state energy. Also, since H
  is Hermitian, therefore
 
<math>\left\langle \psi_{0}|\psi_{0}\right\rangle \left\langle \delta\psi|H|\psi_{0}\right\rangle -\left\langle \psi_{0}|H|\psi_{0}\right\rangle \left\langle \delta\psi|\psi_{0}\right\rangle =0</math>
 
Further, since the variation preserves the fact that <math>\left\langle \psi_{0}|\psi_{0}\right\rangle =1</math>, this makes <math>\left\langle \delta\psi_{0}|\psi_{0}\right\rangle =0</math>. Then the above equation reduces to
 
<math>\left\langle \delta\psi|H|\psi_{0}\right\rangle =0</math>
 
Substituting the form of the variation and the Hamiltonian, we get
 
<math>\left\langle j\left|H_{0}\right|k\right\rangle +\frac{1}{2}\underset{t}{\sum}[\left\langle jt\left|V\right|kt\right\rangle -\left\langle jt\left|V\right|tk\right\rangle ]=0</math>
 
or, <math>H_{0}\left|m\right\rangle +\underset{p}{\sum}\left|p\right\rangle \underset{t}{\sum}[\left\langle pt\left|V\right|mt\right\rangle -\left\langle pt\left|V\right|tm\right\rangle ]=\varepsilon_{m}\left|m\right\rangle</math>
 
If <math>\left\langle \alpha\beta\left|V\right|\alpha'\beta'\right\rangle =V_{\alpha\beta}\delta_{\alpha\alpha'}\delta_{\beta\beta'}</math> then, we get
 
<math>H_{0}\left|m\right\rangle +\underset{t}{\sum}\underset{\alpha,\beta}{\sum}\left|\alpha\right\rangle \left\langle t\right|\left.\beta\right\rangle V_{\alpha\beta}[\left\langle \beta\right|\left.t\right\rangle \left\langle \alpha\right|\left.m\right\rangle -\left\langle \alpha\right|\left.t\right\rangle \left\langle \beta\right|\left.m\right\rangle ]=\varepsilon_{m}\left|m\right\rangle</math>
 
In matrix form, this can be written as
 
<math>\underset{\beta}{\sum}[\left\langle \alpha\right|H_{0}\left|\beta\right\rangle \left\langle \beta\right|\left.m\right\rangle +\underset{t}{\sum}\left\langle t\right|\left.\beta\right\rangle V_{\alpha\beta}[\left\langle \beta\right|\left.t\right\rangle \left\langle \alpha\right|\left.m\right\rangle -\left\langle \alpha\right|\left.t\right\rangle \left\langle \beta\right|\left.m\right\rangle ]]=\varepsilon_{k}\left\langle \alpha\right|\left.m\right\rangle</math>
 
This equation is known as Hartree-Fock equation. The first term in the summation over t on the left hand side of the above equation is known as the Hartree term or direct energy. The last term in the sum is called the Fock term and it constitutes the exchange energy of the interaction between electrons.
 
The Hartree-Fock equations cannot be computed without knowing the n eigensolutions <math>\left|m\right\rangle</math> since the matrix elements of interaction term V depend on them. We solve these equations iteratively starting by guessing a set of one particle states <math>\left|m\right\rangle</math> and then solve the Hartree-Fock equations to find the next set of eigensolutions. We compare this set with previous set and if they don't match within error then we repeat the process till we get a self consistent set of eigensolutions.


==== Hartree-Fock in second quantized form ====
==== Hartree-Fock in second quantized form ====

Revision as of 01:14, 7 December 2012

Hartree-Fock approach to Phase Transitions

Introduction to self consistent Hartree-Fock theory

The self consistent Hartree-Fock method is a way to approximately find the ground state of a many body system made of n interacting fermions. We start by writing the many particle wavefunction such that it respects the antisymmetry property of fermions. This is achieved by taking Slater determinant of one particle wave functions. The one particle wave functions can themselves be expressed in terms of the basis functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_{i}} as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi_{i}=\underset{k}{\sum c_{ik}\chi_{k}}}

So, the Slater determinant is a function of the coefficients Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{jk}} .

In self consistent field theory, we make a guess for the form of the many electron ground state wave function and then use variation principle to calculate the best approximation for the ground state energy as a function of the coefficients. This leads to a set of non linear Hartree -Fock equations in terms of the coefficients. We then solve the equations iteratively to find the right values of the coefficients upto a certain accuracy. Thus, we obtain the self consistent solution for the ground state wave function of the n particle system and the ground state energy.

With the general introduction self consistent Hartree-Fock method mentioned above, let us now elaborate on the topic with more mathematical details.

Consider a system of n interacting fermions. The Hamiltonian is expressed as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\underset{\alpha\alpha'}{\sum}b_{\alpha}^{\dagger}\left\langle \alpha\left|H_{0}\right|\alpha'\right\rangle b_{\alpha'}+\frac{1}{2}\underset{\alpha\alpha'\beta\beta'}{\sum}b_{\alpha}^{\dagger}b_{\beta}^{\dagger}\left\langle \alpha\beta\left|V\right|\alpha'\beta'\right\rangle b_{\beta'}b_{\alpha'}}


The independent particle state can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\psi_{0}\right\rangle =a_{n}^{\dagger}a_{n-1}^{\dagger} ...a_{2}^{\dagger}a_{1}^{\dagger}\left|0\right\rangle}


In this basis,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\underset{i,j}{\sum}a_{i}^{\dagger}\left\langle i\left|H_{0}\right|j\right\rangle a_{j}+\frac{1}{2}\underset{qrst}{\sum a_{q}^{\dagger}a_{r}^{\dagger}\left\langle qr|V|ts\right\rangle a_{s}a_{t}}}


The variation of state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\psi_{0}\right\rangle} is given by a linear combination

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta\psi_{jk}=\varepsilon_{jk}a_{j}^{\dagger}a_{k}\left|\psi_{0}\right\rangle}


The “best” state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\psi_{0}\right\rangle} should minimise the ground state energy. Also, since H

 is Hermitian, therefore 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle \psi_{0}|\psi_{0}\right\rangle \left\langle \delta\psi|H|\psi_{0}\right\rangle -\left\langle \psi_{0}|H|\psi_{0}\right\rangle \left\langle \delta\psi|\psi_{0}\right\rangle =0}


Further, since the variation preserves the fact that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle \psi_{0}|\psi_{0}\right\rangle =1} , this makes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle \delta\psi_{0}|\psi_{0}\right\rangle =0} . Then the above equation reduces to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle \delta\psi|H|\psi_{0}\right\rangle =0}


Substituting the form of the variation and the Hamiltonian, we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle j\left|H_{0}\right|k\right\rangle +\frac{1}{2}\underset{t}{\sum}[\left\langle jt\left|V\right|kt\right\rangle -\left\langle jt\left|V\right|tk\right\rangle ]=0}


or, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{0}\left|m\right\rangle +\underset{p}{\sum}\left|p\right\rangle \underset{t}{\sum}[\left\langle pt\left|V\right|mt\right\rangle -\left\langle pt\left|V\right|tm\right\rangle ]=\varepsilon_{m}\left|m\right\rangle}


If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle \alpha\beta\left|V\right|\alpha'\beta'\right\rangle =V_{\alpha\beta}\delta_{\alpha\alpha'}\delta_{\beta\beta'}} then, we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{0}\left|m\right\rangle +\underset{t}{\sum}\underset{\alpha,\beta}{\sum}\left|\alpha\right\rangle \left\langle t\right|\left.\beta\right\rangle V_{\alpha\beta}[\left\langle \beta\right|\left.t\right\rangle \left\langle \alpha\right|\left.m\right\rangle -\left\langle \alpha\right|\left.t\right\rangle \left\langle \beta\right|\left.m\right\rangle ]=\varepsilon_{m}\left|m\right\rangle}


In matrix form, this can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{\beta}{\sum}[\left\langle \alpha\right|H_{0}\left|\beta\right\rangle \left\langle \beta\right|\left.m\right\rangle +\underset{t}{\sum}\left\langle t\right|\left.\beta\right\rangle V_{\alpha\beta}[\left\langle \beta\right|\left.t\right\rangle \left\langle \alpha\right|\left.m\right\rangle -\left\langle \alpha\right|\left.t\right\rangle \left\langle \beta\right|\left.m\right\rangle ]]=\varepsilon_{k}\left\langle \alpha\right|\left.m\right\rangle}


This equation is known as Hartree-Fock equation. The first term in the summation over t on the left hand side of the above equation is known as the Hartree term or direct energy. The last term in the sum is called the Fock term and it constitutes the exchange energy of the interaction between electrons.

The Hartree-Fock equations cannot be computed without knowing the n eigensolutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|m\right\rangle} since the matrix elements of interaction term V depend on them. We solve these equations iteratively starting by guessing a set of one particle states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|m\right\rangle} and then solve the Hartree-Fock equations to find the next set of eigensolutions. We compare this set with previous set and if they don't match within error then we repeat the process till we get a self consistent set of eigensolutions.

Hartree-Fock in second quantized form

The interaction energy operator for a two body system with pairwise interactions is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) }

In the above operator, it is important to note the order of the operators. Including the kinetic energy term we can write the Hamiltonian for particles of mass m with pairwise interactions in second quantized formalism as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \nabla \psi_{\sigma}^{\dagger}(\vec{r}) \cdot \nabla \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) }

The first-order correction to the energy induced by the interaction is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^{(1)} = \frac{1}{2}\int d^{3}rd^{3}r^{\prime}v(\vec{r} - \vec{r}^{\prime})\sum_{\sigma\sigma^{\prime}}<\Phi_{0}|\psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r})|\Phi_{0}>}

Define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{\sigma}(\vec{r}-\vec{r}^{\prime})= <\Phi_{0}|\psi_{\sigma}^{\dagger}(\vec{r})\psi_{\sigma}(\vec{r}^{\prime})|\Phi_{0}>}

Then, we find that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^{(1)} = \frac{1}{2}\int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime})[n^{2}-\sum_{\sigma}G_{\sigma}(\vec{r}-\vec{r}^{\prime})^{2}]}

(You can find intermediate steps in "Lectures on Quantum Mechanics" by Gordon Baym).

The first term in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^{(1)}} is called the Hartree energy or direct energy. The second term is called the Fock term and it corresponds to the energy due to exchange interactions.