Phy5645/Heisenberg Uncertainty Relation 3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let's say that a particle has wavefunction : <math>\Psi (x)=(\frac{\pi }{a})^{-1/4}e^{-ax^{2}/2}</math> | Let's say that a particle has wavefunction : <math>\Psi (x)=\left (\frac{\pi }{a}\right )^{-1/4}e^{-ax^{2}/2}</math> | ||
and we are trying to verify Heisenberg Uncertanity relation. | and we are trying to verify Heisenberg Uncertanity relation. | ||
In order to verify the uncertanity relation, we need to find | In order to verify the uncertanity relation, we need to find the uncertainties in position and momentum, | ||
<math>\Delta p=\sqrt{\left \langle {p^{2}} \right \rangle -\left \langle {p} \right \rangle ^{2}}</math> | |||
and | |||
<math>\Delta x=\sqrt{\left \langle {x^{2}} \right \rangle -\left \langle {x} \right \rangle ^{2}}.</math> | |||
Lets start by calculating the expectation values one by one. | |||
<math>\langle {x}\rangle =\left \langle {\Psi \left |{x} \right |\Psi } \right \rangle =\int\limits_{-\infty}^{\infty} {x\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} xe^{-ax^{2}}\,dx=0 </math> | |||
since the integrand is odd and thus the integral over all space is zero. | |||
<math>\left \langle {x^{2}} \right \rangle =\left \langle {\Psi \left |{x^{2}} \right |\Psi } \right \rangle </math> | <math>\left \langle {x^{2}} \right \rangle =\left \langle {\Psi \left |{x^{2}} \right |\Psi } \right \rangle </math> | ||
<math>=\int\limits_{-\infty }^{\infty } {x^{2}\left |{\Psi (x)} \right |^{2}dx}=\sqrt {\frac{a}{\pi }} \ | <math>=\int\limits_{-\infty }^{\infty } {x^{2}\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} x^{2}e^{-ax^{2}}\,dx=\tfrac{1}{2}\sqrt {\frac{a}{\pi }} \sqrt {\frac{\pi }{a^{3}}} =\frac{1}{2a}</math> | ||
Since the integral is of a Gaussian times a power of <math>x</math>, we are able to use the known results for such integrals. | |||
Similarly to <math>\left \langle {x} \right \rangle, </math> <math>\left \langle {p} \right \rangle =\left \langle {\Psi \left |{p} \right |\Psi } \right \rangle =0</math> because the integrand will be an odd function as well. | |||
<math>\left \langle {p^{2}} \right \rangle =\left \langle {\Psi \left |{p^{2}} \right |\Psi } \right \rangle </math> | <math>\left \langle {p^{2}} \right \rangle =\left \langle {\Psi \left |{p^{2}} \right |\Psi } \right \rangle </math> | ||
<math>=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} (\frac{\hbar }{i}\frac{\ | <math>=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} \left (\frac{\hbar }{i}\frac{\partial}{\partial x}\right )^{2}e^{-ax^{2}/2}dx</math> | ||
<math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\ | <math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\partial}{\partial x}\left (-\frac{2ax}{2}e^{-ax^{2}/2}\right )\,dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \left \lbrace {-ae^{-ax^{2}/2}+\left ({-\frac{2ax}{2}} \right )\left ({-\frac{2ax}{2}} \right )e^{-ax^{2}/2}} \right \rbrace dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\int {e^{-ax^{2}}} dx\text{ +}\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\int {x^{2}e^{-ax^{2}}} dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\sqrt {\frac{\pi }{a}} +\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\frac{1}{2}\sqrt {\frac{\pi }{a^{3}}} </math> | ||
<math>\text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}</math> | <math>\text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}</math> | ||
Combining these results, we obtain <math>\Delta p=\hbar\sqrt{\frac{a}{2}}</math> | |||
<math>\ | |||
and | and | ||
<math>\ | <math>\Delta x=\frac{1}{\sqrt{2a}}</math> | ||
finally, | finally, | ||
<math>\ | <math>\Delta p\,\Delta x =\hbar\sqrt{\frac{a}{2}}\frac{1}{\sqrt{2a}} =\sqrt {\frac{\hbar ^{2}}{4}} =\frac{\hbar }{2}</math>. | ||
Back to [[Heisenberg Uncertainty Principle]] | Back to [[Heisenberg Uncertainty Principle]] |
Revision as of 16:23, 10 April 2013
Let's say that a particle has wavefunction : and we are trying to verify Heisenberg Uncertanity relation.
In order to verify the uncertanity relation, we need to find the uncertainties in position and momentum, and
Lets start by calculating the expectation values one by one.
since the integrand is odd and thus the integral over all space is zero.
Since the integral is of a Gaussian times a power of , we are able to use the known results for such integrals.
Similarly to because the integrand will be an odd function as well.
Combining these results, we obtain and
finally,
.
Back to Heisenberg Uncertainty Principle