Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
Using the identity, <math>\Psi^*\nabla^2\Psi=\nabla\cdot\left(\Psi^*\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi,</math> we obtain
Using the identity, <math>\Psi^*\nabla^2\Psi=\nabla\cdot\left(\Psi^*\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi,</math> we obtain


<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi\right )\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r} </math>
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left [\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi\right ]\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r} </math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\Psi^{\ast}\cdot\nabla\Psi\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r}</math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\Psi^{\ast}\cdot\nabla\Psi\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r}</math>


Line 14: Line 14:
as well as the condition, <math>\lim_{r \to \infty}\Psi^{\ast}\nabla\Psi=0,</math> we obtain
as well as the condition, <math>\lim_{r \to \infty}\Psi^{\ast}\nabla\Psi=0,</math> we obtain


<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right ]d^3\textbf{r}</math>
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left (\frac{\hbar^2}{2m}\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right )d^3\textbf{r}</math>


(2):first we find the time derivative of energy density:
(2) We first find the time derivative of energy density:


<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right)
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left (\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right )
=\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>,
=\frac{\hbar^2}{2m}\left (\nabla\Psi^{\ast}\cdot\nabla\frac{\partial\Psi}{\partial t} + \nabla\frac{\partial\Psi^{\ast}}{\partial t}\cdot\nabla\Psi\right ) + \frac{\partial\Psi^{\ast}}{\partial t}V\Psi+\Psi^{\ast}V\frac{\partial\Psi}{\partial t}</math>
<math>=\frac{\hbar^2}{2m}\left(\nabla\cdot\left(\nabla\psi^*\cdot\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\cdot\nabla\psi\right) - \left(\frac{\partial\psi}{\partial t}\nabla^2\psi^*+\frac{\partial\psi^*}{\partial t}\nabla^2\psi\right)\right)+\frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>
<math>=\frac{\hbar^2}{2m}\left [\nabla\cdot\left (\nabla\Psi^{\ast}\frac{\partial\psi}{\partial t} + \frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi\right) - \left (\frac{\partial\Psi}{\partial t}\nabla^2\Psi^{\ast}+\frac{\partial\Psi^{\ast}}{\partial t}\nabla^2\Psi\right )\right ]+\frac{\partial\Psi^{\ast}}{\partial t}V\Psi+\Psi^{\ast}V\frac{\partial\Psi}{\partial t}</math>
<math>=\frac{\hbar^2}{2m}\nabla\cdot\left(\nabla\psi^*\cdot\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\cdot\nabla\psi\right)+\frac{\partial\psi^*}{\partial t}\left(-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi\right)+\frac{\partial\psi}{\partial t}\left(-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*\right)</math>,
<math>=\frac{\hbar^2}{2m}\nabla\cdot\left (\nabla\Psi^{\ast}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi\right)+\frac{\partial\Psi^{\ast}}{\partial t}\left (-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi\right )+\frac{\partial\Psi}{\partial t}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi^{\ast}+\nabla\Psi^{\ast}\right )</math>,


Using Schrodinger Equations:
Using the Schrödinger equation,
<math>i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi</math>,
<math>i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi+V\Psi,</math>
and, <math>-i\hbar\frac{\partial\psi^*}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*</math>,


Also the energy flux density is:
and its complex conjugate,
<math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>,
<math>-i\hbar\frac{\partial\Psi^{\ast}}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi^{\ast}+V\Psi^{\ast},</math>


So:<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>,
and defining the energy flux density as <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi + \frac{\partial\Psi}{\partial t}\nabla\Psi^{\ast}\right ),</math>
Hence:
 
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>
We obtain
<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\Psi^{\ast}}{\partial t}\frac{\partial\Psi}{\partial t}-\frac{\partial\Psi}{\partial t}\frac{\partial\Psi^{\ast}}{\partial t}=-\nabla\cdot\textbf{S},</math>
 
or, rearranging,
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0.</math>


Back to [[Relation Between the Wave Function and Probability Density]]
Back to [[Relation Between the Wave Function and Probability Density]]

Revision as of 15:36, 16 April 2013

(1) The energy operator in three dimensions is: so the average energy in state is:

Using the identity, we obtain

If we apply Gauss' Theorem to the first term,

as well as the condition, we obtain

(2) We first find the time derivative of energy density:

,

Using the Schrödinger equation,

and its complex conjugate,

and defining the energy flux density as

We obtain

or, rearranging,

Back to Relation Between the Wave Function and Probability Density