Phy5645/Free particle SE problem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
-------- | -------- | ||
(a) The plane wave, <math> \psi = e^{ikz},</math> does not depend on <math> x </math> or <math> y </math>. Therefore, the Schrödinger equation becomes <math> \left( \frac{d^2}{dz^2} + k^2 \right) \psi = 0 \!</math>. We may easily see that this is a solution to the equation: | |||
(a) | |||
:<math> | :<math> | ||
\frac{ | \frac{d^2}{dz^2} \left( e^{ikz} \right) + k^2 e^{ikz} = 0. | ||
</math> | </math> | ||
(b) In | (b) In spherical coordinates, the Laplacian is given by | ||
:<math> | :<math> | ||
\nabla^2 = \partial_{r}^2 + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta}^2 + \frac{\cos\theta}{r^2 \sin\theta} \partial_{\theta} + \frac{1}{r^2 \sin^2\theta} \partial_{\phi}^2 . | \nabla^2 = \partial_{r}^2 + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta}^2 + \frac{\cos\theta}{r^2 \sin\theta} \partial_{\theta} + \frac{1}{r^2 \sin^2\theta} \partial_{\phi}^2 . | ||
</math> | </math> | ||
The spherical wave <math> \psi = \frac{ikr}{r} \! </math> does not depend on <math> \theta \!</math> or <math> \phi \!</math>. Therefore, the Schrodinger equation becomes | The spherical wave <math> \psi = \frac{e^{ikr}}{r} \! </math> does not depend on <math> \theta \!</math> or <math> \phi \!</math>. Therefore, the Schrodinger equation becomes | ||
:<math> | :<math> | ||
\left( \ | \left( \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + k^2 \right) \psi = 0 | ||
</math> | </math> | ||
:<math> | :<math> | ||
\Rightarrow \frac{ | \Rightarrow \frac{d^2}{dr^2} \left( \frac{e^{ikr}}{r} \right) + \frac{2}{r} \frac{d}{dr} \left( \frac{e^{ikr}}{r} \right) + k^2 \frac{e^{ikr}}{r} = \frac{2e^{ikr}}{r^3} - \frac{2ike^{ikr}}{r^2} + \frac{2}{r} \left( -\frac{e^{ikr}}{r^2} + \frac{ike^{ikr}}{r} \right) = 0. | ||
</math> | </math> | ||
Back to [[Stationary States]] | Back to [[Stationary States]] |
Revision as of 10:46, 17 April 2013
Submitted by team 1
(a) The plane wave, does not depend on or . Therefore, the Schrödinger equation becomes . We may easily see that this is a solution to the equation:
(b) In spherical coordinates, the Laplacian is given by
The spherical wave does not depend on or . Therefore, the Schrodinger equation becomes
Back to Stationary States