Phy5645/Problem 1D sample: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
---------------
---------------


The Schroedinger's equation takes the form:
The Schrödinger equation takes the form,


:<math>-\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z)</math>
:<math>-\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z).</math>


 
Let us assume that <math>\psi</math> has the form, <math>\psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z).</math> Then
Assuming that <math>\psi\!</math> can be write like:
:<math>\psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z) \!</math>
 
 
So,


:<math>
:<math>
\begin{align}
\begin{align}
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\
+ \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z)  
+ \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z).
\end{align}
\end{align}
</math>
</math>




Dividing by <math>\psi(x,y,z) \!</math>
Dividing by <math>\psi(x,y,z),</math> we obtain


:<math>
:<math>
Line 31: Line 26:
</math>
</math>


We can perfectly separate the right hand side into three parts, where it will only depend on <math> x \!</math>, or on <math> y \!</math> or only on <math> z \!</math>. Then each of these parts must be equal to a constant. So:
We may now separate the left-hand side into three parts, each depending on only one of the three coordinates <math>x,\,y,</math> and <math>z.</math> Each of these parts must be equal to a constant. Therefore,
 
:<math>
:<math>
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) = E_x  </math>
-\frac{\hbar^2}{2m}\frac{d^2\Phi(x)}{dx^2} + X(x)\Phi(x) = E_x\Phi(x) </math>


:<math>
:<math>
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) = E_y  </math>
-\frac{\hbar^2}{2m}\frac{d^2\Delta(y)}{dy^2} + Y(y)\Delta(y) = E_y\Delta(y) </math>


:<math>
:<math>
-\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E_z </math>
-\frac{\hbar^2}{2m}\frac{d^2\Omega(z)}{dz^2} + Z(z)\Omega(z) = E_z\Omega(z), </math>
 
where <math> E_x \!</math>, <math> E_y \!</math> and <math> E_z \!</math> are constants and <math> E = E_x+E_y+E_z \!</math>


where <math> E_x </math>, <math> E_y </math> and <math> E_z </math> are constants and <math> E = E_x+E_y+E_z.</math>


Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy <math> E \!</math> is the sum of the energies <math> E_x \!</math>, <math> E_y \!</math> and <math> E_z \!</math> in each dimension.
Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy <math>E</math> is the sum of the energies <math> E_x </math>, <math> E_y </math> and <math> E_z </math> in each dimension.


Back to [[Motion in One Dimension]]
Back to [[Motion in One Dimension]]

Revision as of 11:44, 17 April 2013

(Submitted by team 1)


The Schrödinger equation takes the form,

Let us assume that has the form, Then


Dividing by we obtain

We may now separate the left-hand side into three parts, each depending on only one of the three coordinates and Each of these parts must be equal to a constant. Therefore,

where , and are constants and

Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy is the sum of the energies , and in each dimension.

Back to Motion in One Dimension