Translation operator problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Source: "Modern Quantum Mechanics",Sakurai,problem1.30
Problem: The translation operator for a finite (spatial) displacement is given by ,
where '''p''' is the momentum operator.
<math>T(\mathbf{l})=exp(-\frac{i\mathbf{p}.\mathbf{l}}{\hbar})</math>
a. Evaluate  <math>[x_{i},T(\mathbf{l}))]</math>
b. Using (a) (or otherwise), demonstrate how the expectation value <math><\mathbf{x}></math>
changes under translation.
Solution:
a)  <math>[x_{i},T(\mathbf{l}))]=i\hbar\frac{\partial T(\mathbf{l})}{\partial p_{i}}=i\hbar(-i\frac{l_{i}}{\hbar})exp(-\frac{i\mathbf{p}.\mathbf{l}}{\hbar})</math>
a)  <math>[x_{i},T(\mathbf{l}))]=i\hbar\frac{\partial T(\mathbf{l})}{\partial p_{i}}=i\hbar(-i\frac{l_{i}}{\hbar})exp(-\frac{i\mathbf{p}.\mathbf{l}}{\hbar})</math>



Revision as of 16:00, 8 July 2013

a)

b) , is a general ket