Phy5645/Square Wave Potential Problem: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let us once again confine our attention to the region, <math>0 < x < a.\!</math> The wave function for this region is given by | |||
<math>\psi_k(x)= | |||
\begin{cases} | |||
Ae^{ik_1x}+Be^{-ik_1x}, & 0 < x < c \\ | |||
Ce^{ik_2x}+De^{-ik_2x}, & c < x < a, | |||
\end{cases} | |||
</math> | |||
where <math>k_1=\frac{\sqrt{2mE}}{\hbar}</math> and <math>k_2=\frac{\sqrt{2m(E-V_0)}}{\hbar}.</math> | |||
By Bloch's theorem, the full wave function must have the form, | |||
:<math>\psi_k(x)=e^{ikx}u_k(x).\!</math> | |||
<math> | Continuity of <math>\psi_k(x)\!</math> and <math>\psi'_k(x)\!</math> at <math>x=c\!</math> requires that | ||
:<math> Ae^{ik_1c}+Be^{-ik_1c}=Ce^{ik_2c}+De^{-ik_2c}\!</math> | |||
and | |||
:<math> ik_1(Ae^{ik_1c}-Be^{-ik_1c})=ik_2(Ce^{ik_2c}-De^{-ik_2c}).\!</math> | |||
<math> | The periodicity of <math>u_k(x)\!</math> and continuity of <math>\psi_k(x)\!</math> and <math>\psi'_k(x)\!</math> at <math>x=a\!</math> gives us | ||
:<math>Ce^{ik_2a}+De^{-ik_2a}=e^{ika}(A+B)\!</math> | |||
and | |||
:<math>ik_2(Ce^{ik_2a}-De^{-ik_2a})=ik_1e^{ika}(A-B).\!</math> | |||
<math>A | We have thus obtained four linear equations in <math>A,\!</math> <math>B,\!</math> <math>C,\!</math> and <math>D.\!</math> To derive the condition under which these equations have a nontrivial solution, we first eliminate <math>C\!</math> and <math>D\!</math> and then determine when the resulting <math>2\times 2\!</math> system has nontrivial solutions; this yields the condition, | ||
:<math>\cos{ka}=\cos{k_1 c}\cos{k_2 b}-\frac{k_1^2+k_2^2}{2k_1k_2}\sin{k_1 c}\sin{k_2 b},</math> | |||
<math> | where <math>b=a-c\!</math> is the width of the "barrier" parts of the potential. This, along with the equation, | ||
<math>k_1^2-k_2^2=\frac{2mV_0}{\hbar^2},</math> | |||
yields the energy spectrum of the system. | |||
If we take the limit <math> V_0 \rightarrow \infty \!</math> and <math> b \rightarrow 0 \!</math> in such a way as to keep <math>V_0b\!</math> finite, then we can obtain: | |||
<math> | :<math>-ik_2 b=-i\sqrt{\frac{2m}{\hbar^2}(E-V_0)b^2}\approx \sqrt{\frac{2mb}{\hbar^2}(V_0b)}\ll 1</math> | ||
In this limit, | |||
<math> \ | :<math>\sin{k_2b}\approx k_2b </math> | ||
and | |||
:<math>\cos{k_2b}\approx 1.</math> | |||
<math> | Our equations then reduce to, noting that <math>c=a\!</math> in this limit, | ||
:<math>\cos(ka)=\cos(k_1a)+\frac{mV_0ab}{\hbar^2}\frac{\sin(k_1a)}{k_1a}.</math> | |||
This is just the equation that we obtained for the Dirac comb potential; note that, here, <math>V_0b\!</math> stands for the <math> V_0\!</math> in the Dirac comb problem described earlier. | |||
for <math> | |||
Back to [[Motion in a Periodic Potential]] | Back to [[Motion in a Periodic Potential]] |
Revision as of 16:07, 6 August 2013
Let us once again confine our attention to the region, The wave function for this region is given by
where and
By Bloch's theorem, the full wave function must have the form,
Continuity of and at requires that
and
The periodicity of and continuity of and at gives us
and
We have thus obtained four linear equations in and To derive the condition under which these equations have a nontrivial solution, we first eliminate and and then determine when the resulting system has nontrivial solutions; this yields the condition,
where is the width of the "barrier" parts of the potential. This, along with the equation,
yields the energy spectrum of the system.
If we take the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0 \rightarrow \infty \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b \rightarrow 0 \!} in such a way as to keep Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0b\!} finite, then we can obtain:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -ik_2 b=-i\sqrt{\frac{2m}{\hbar^2}(E-V_0)b^2}\approx \sqrt{\frac{2mb}{\hbar^2}(V_0b)}\ll 1}
In this limit,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{k_2b}\approx k_2b }
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{k_2b}\approx 1.}
Our equations then reduce to, noting that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=a\!} in this limit,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(ka)=\cos(k_1a)+\frac{mV_0ab}{\hbar^2}\frac{\sin(k_1a)}{k_1a}.}
This is just the equation that we obtained for the Dirac comb potential; note that, here, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0b\!} stands for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0\!} in the Dirac comb problem described earlier.
Back to Motion in a Periodic Potential