Phy5645/Angular Momentum Problem 1: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Submitted by Team 1
--------
'''Questions:'''
(a) Show that the operator
:<math> \hat{R}_{\Delta \phi} \equiv \exp \left( \frac{i \Delta \phi \hat{L}_z}{\hbar} \right)</math>
when acting on the function <math> f(\phi) \!</math> changes <math> f \!</math> by a rotation of coordinates about the <math> z \!</math> axis so that the radius through <math> \phi \!</math> is rotated to the radius through <math> \phi + \Delta \phi \!</math>. That is, show that
:<math> \hat{R}_{\Delta\phi} f(\phi) = f \left( \phi + \Delta \phi \right) </math>.
(b) Show that the operator
:<math> \hat{R}_{\Delta\vec{\phi}} = \exp \left( \frac{i \Delta \vec{\phi} \cdot \mathbf{\hat{L}}}{\hbar} \right) </math>
when action on <math> f(\mathbf{r}) \!</math> changes <math> f \!</math> by rotating <math> \mathbf{r} \!</math> to a new value on the surface of the sphere of radius <math> r \!</math>, but rotated away from <math> \mathbf{r} \!</math> through the azimuth <math> \Delta \phi \!</math>, so that <math> \mathbf{r} \left( \theta, \phi \right) \rightarrow \mathbf{r}' = \mathbf{r} \left( \theta, \phi + \Delta \phi \right) \!</math>. For infinitesimal displacement <math> \delta \vec{\phi} \!</math>, we may write
:<math> \hat{R}_{\delta \vec{\phi}} f(\mathbf{r}) = f\left( \mathbf{r} + \delta \mathbf{r} \right) </math>
:<math> \delta \mathbf{r} = \delta \vec{\phi} \times \mathbf{r}. </math>
---------
'''Solutions:'''
(a)  
(a)  
:<math> \hat{R}_{\Delta \phi} f = \left[ \exp \left( \Delta \phi \frac{\partial}{\partial \phi} \right) \right] f </math>
:<math> \hat{R}_{\Delta \phi} f = \left[ \exp \left( \Delta \phi \frac{\partial}{\partial \phi} \right) \right] f </math>

Revision as of 21:55, 28 August 2013

(a)

(b) Let be an infinitesimal angle so that in the limit that . For the infinitesimal rotation

so that

.

In the Taylor series expansion of above we have only kept terms of . [The expression is valid only to terms of .] In this manner we obtain

For a finite rotational displacement through the angle , we apply the operator , times:

and pss to the limit or, equivalently, .

.

The operator rotates to with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through with fixed in space, then in the new coordinate frame this vector has the value . Thus, rotation of coordinates through is generated by the operator


(Note: This problem is excerpted from Introductory Quantum Mechanics, 2nd edition, p377-p379, which is written by Richard L. Liboff.)