Phy5645/HydrogenAtomProblem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''(a)''' | '''(a)''' To find <math>N,\!</math> we simply take the volume integral of <math>\psi\psi^\ast.</math> Note that <math>Y_1^{-1}\left(\theta, \phi \right) = \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi},</math> and thus the <math>\phi\!</math> dependence in the integral vanishes. | ||
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and | |||
phi dependence in the integral vanishes | |||
<math>\ | <math>1=\frac{3}{8\pi}\int_{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty} | ||
N^{2}r^{2}sin^{2} | N^{2}r^{2}\sin^{2}{\theta}e^{-r/a}r^{2}\sin{\theta}\,dr\,d\theta\,d\phi</math> | ||
<math>\ | <math>=\tfrac{3}{4}N^2 \int_{0}^{\pi} sin^{3}{\theta}\,d\theta \int_{0}^{\infty}r^{4}e^{-r/a}\,dr</math> | ||
<math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math> | <math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math> |
Revision as of 23:38, 1 September 2013
(a) To find we simply take the volume integral of Note that and thus the dependence in the integral vanishes.
Therefore so
(b)
(c)
Average over and at
(d)
l=1, m = -1 are the l and m of the eigenstate
Back to Hydrogen Atom