Phy5645/HydrogenAtomProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''(a)''' Take the volume integral of  <math>\psi\psi*</math>. <math>Y_{1,-1}\left(\theta, \phi  
'''(a)''' To find <math>N,\!</math> we simply take the volume integral of  <math>\psi\psi^\ast.</math>  Note that <math>Y_1^{-1}\left(\theta, \phi \right) = \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi},</math> and thus the <math>\phi\!</math> dependence in the integral vanishes.
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and as such the  
phi dependence in the integral vanishes :


<math>\int _{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}  
<math>1=\frac{3}{8\pi}\int_{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}  
N^{2}r^{2}sin^{2}(\theta) \frac{3}{8\pi}e^{-\frac{r}
N^{2}r^{2}\sin^{2}{\theta}e^{-r/a}r^{2}\sin{\theta}\,dr\,d\theta\,d\phi</math>
{a_o}}r^{2}sin(\theta)drd\theta d\phi</math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \int_{0}^{\pi} sin^{3}(\theta)d
<math>=\tfrac{3}{4}N^2 \int_{0}^{\pi} sin^{3}{\theta}\,d\theta \int_{0}^{\infty}r^{4}e^{-r/a}\,dr</math>
\theta \int_{0}^{2\pi} e^{-2i\phi}d\phi \int_{ 0}^{\infty}r^{4}e^{-
\frac{r}{a_o}}dr = 1 </math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math>
<math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math>

Revision as of 23:38, 1 September 2013

(a) To find we simply take the volume integral of Note that and thus the dependence in the integral vanishes.

Therefore so

(b)

(c)

Average over and at

(d)

l=1, m = -1 are the l and m of the eigenstate

Back to Hydrogen Atom