Phy5645/Cross Section Relation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
Since <math>| f |^2 = (Re f )^2 + (Im f )^2 \geq  (Im f )^2</math>  
Since <math>| f |^2 = (Re f )^2 + (Im f )^2 \geq  (Im f )^2</math>  


therefore, <math> \frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} \geq (Im f_{k}(\theta))^{2} </math>
therefore, <math> \frac{d\sigma (\theta)}{d\Omega} \geq (\Im m[f_{k}(\theta)])^{2} </math>


On the other hand, from the optical theorem we have
On the other hand, from the optical theorem we have


<math> \sigma =\frac{4\pi}{k} Im f_{k}(\theta)) \leq \frac{4\pi}{k}\sqrt{\frac{\mathrm{d} \sigma (0) }{\mathrm{d} \Omega }}</math>
<math> \sigma =\frac{4\pi}{k} \Im m[f_{k}(\theta)]) \leq \frac{4\pi}{k}\sqrt{\frac{d\sigma (0) }{d\Omega }}</math>


For a central potential the scattering amplitude is
For a central potential the scattering amplitude is


<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} P_{l} (cos \theta)</math>
<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} \sin\delta _{l} P_{l} (\cos \theta)</math>


and, in terms of this, the differential cross section is
and, in terms of this, the differential cross section is


<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} sin\delta _{l}sin\delta _{l^{\prime}} P_{l} (cos \theta)P_{l^{\prime}} (cos \theta)</math>
<math>\frac{d\sigma (\theta)}{d\Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} \sin\delta _{l}\sin\delta _{l'} P_{l} (\cos \theta)P_{l'} (\cos \theta)</math>


The total cross section is
The total cross section is then
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}</math>


Since <math> P_{l}(1)= 1</math> we can write
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) \sin^2\delta _{l}.</math>


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l}  \right ]^2</math>
Since <math> P_{l}(1)= 1\!</math> we can write


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin\delta _{l}cos\delta _{l}  + isin^2\delta _{l}  \right ]^2</math>
<math>\frac{d\sigma (0)}{d\Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} \right ]^2=\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin\delta _{l}\cos\delta _{l}  + i\sin^2\delta _{l}  \right ]^2</math>


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin\delta _{l}cos\delta _{l}\right ]^2 +\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2</math>
<math>=\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin\delta _{l}\cos\delta _{l}\right ]^2 +\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin^2\delta _{l}  \right ]^2\geq \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2 = \frac{k^2\sigma ^{2}}{16\pi ^{2}}.</math>
<math>\Rightarrow  \frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} \geq \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2 = \frac{k^2\sigma ^{2}}{16\pi ^{2}}</math>
 
From this, it follows that <math>\sigma\leq \frac{4\pi}{k}\sqrt{\frac{d\sigma (0)}{d\Omega}}.</math>


Back to [[Central Potential Scattering and Phase Shifts]]
Back to [[Central Potential Scattering and Phase Shifts]]

Revision as of 23:53, 2 September 2013

The differential cross section is related to the scattering amplitude through

Since

therefore,

On the other hand, from the optical theorem we have

For a central potential the scattering amplitude is

and, in terms of this, the differential cross section is

The total cross section is then

Since we can write

From this, it follows that

Back to Central Potential Scattering and Phase Shifts