Exponential Potential Born Approximation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The potential <math> V \!</math> is spherically symmetric, so that | |||
<math> f_{\text{Born}}(\theta)= -\frac{2m}{\hbar^2} \int_0^\infin dr'\,V(r') \frac{\sin(qr')}{qr'} {r'}^2.</math> | |||
Substituting in the given potential, we obtain | |||
<math> f_{\text{Born}}(\theta) = - \frac{2mV_0}{\hbar^2 q} \int_0^\infin dr'\, r' \sin(qr') e^{-r'/a}. </math> | |||
Integrating by parts, we obtain | |||
<math> | |||
\begin{align} | \begin{align} | ||
f_{ | f_{\text{Born}}(\theta) | ||
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\int_0^\infin dr'\,\cos(qr')e^{-r'/a} \\ | ||
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left (\int_0^\infin dr'\,e^{iqr'}e^{-r'/a}\right ) \\ | ||
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { e^{(iq - | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left [\frac{e^{(iq - 1/a)r'}}{iq - 1/a}\right ]_{0}^{\infin} \\ | ||
&= -\frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { 1 } | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left [\frac {1}{1/a + iq}\right ] \\ | ||
\ | &= \frac{4mV_0a^3}{\hbar^2}\left (\frac{1}{1+q^2a^2}\right )^2. | ||
\end{align}</math> | |||
The differential cross section is therefore | |||
<math> \frac{d\sigma}{d\theta}=\left|f_{\text{Born}}(\theta) \right|^2=\frac{16m^2V_0^2a^6}{\hbar^4} \left(\frac{1}{1+q^2a^2}\right)^4.</math> | |||
</math> | |||
Back to [[Born Approximation and Examples of Cross-Section Calculations]] | Back to [[Born Approximation and Examples of Cross-Section Calculations]] |
Revision as of 02:34, 9 December 2013
The potential is spherically symmetric, so that
Substituting in the given potential, we obtain
Integrating by parts, we obtain
The differential cross section is therefore
Back to Born Approximation and Examples of Cross-Section Calculations