Phy5645/Hydrogen Atom WKB: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.</math> | <math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.</math> | ||
Using the fact that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!</math> and | Using the fact that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!</math> and that | ||
<math>\ | <math>\int_{r_1}^{r_2}\sqrt{{\frac{(x-r_1)(x-r_2)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {r_2} -\sqrt {r_1} )^{2},</math> | ||
we obtain | |||
<math> | <math>\frac{\pi}{2}\sqrt {2mE}(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\tfrac{1}{2})\pi \hbar,</math> | ||
<math>\sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar </math> | <math>\sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar </math> |
Revision as of 02:48, 13 January 2014
The WKB approximation is given by
where
We may rewrite the above as
or, making the substitution,
and
Using the fact that and that
we obtain
Then if we finally pull out E,
Back to WKB in Spherical Coordinates