Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
<math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.</math>
<math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.</math>


Using the fact that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!</math> and
Using the fact that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!</math> and that


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math>
<math>\int_{r_1}^{r_2}\sqrt{{\frac{(x-r_1)(x-r_2)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {r_2} -\sqrt {r_1} )^{2},</math>


<math>\text{ the definition  }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}</math>
we obtain


<math>\sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar </math>
<math>\frac{\pi}{2}\sqrt {2mE}(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\tfrac{1}{2})\pi \hbar,</math>


<math>\sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar </math>
<math>\sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar </math>

Revision as of 02:48, 13 January 2014

The WKB approximation is given by

where

We may rewrite the above as

or, making the substitution,

and

Using the fact that and that

we obtain

Then if we finally pull out E,

Back to WKB in Spherical Coordinates