Phy5645/Gamowfactor: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
where <math>p(x)=\frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}.</math> | where <math>p(x)=\frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}.</math> | ||
<math>\ | We now evaluate the integral appearing in the exponential. | ||
<math>\int_{a}^{b}p(x)\,dx=\sqrt{\frac{2m}{\hbar^2}}\int_{a}^{b}\sqrt{V(x)-E}\,dx = \sqrt{\frac{2m}{\hbar^{2}}}\int_{a}^{b} | |||
\sqrt{\frac{2z_{1}e^{2}}{x}-E}\,dx</math> | |||
<math>=\sqrt{\frac{4mz_{1}e^{2}}{\hbar^2}}\int_{a}^{b} \sqrt{\frac{1}{x}-\frac{1}{b}}\,dx</math> | |||
Let us define | |||
<math>= \ | <math>I=\int_{a}^{b} \sqrt{\frac{1}{x}-\frac{1}{b}}\,dx.</math> | ||
We now make the substitution, | |||
<math>x=b\cos^{2}\theta.\!</math> | |||
We then obtain | |||
<math>I= 2\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )} \sqrt{\frac{b\sin^{2}\theta}{\cos^{2}\theta}}\cos\theta\sin\theta\, d\theta</math> | |||
<math> | |||
<math> | <math>=2\sqrt{b}\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )}\sin^{2}\theta\,d\theta </math> | ||
<math> | <math>=\sqrt{b}\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )} ( 1-\cos{2\theta})\,d\theta</math> | ||
<math> | <math>=\sqrt{b}\left [ \theta - \sin\theta \cos\theta \right ]_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )}</math> | ||
<math> | <math>=\sqrt{b}\left \{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )-\sin\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )\right ]\cos\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )\right ]\right \}</math> | ||
<math> | <math>=\sqrt{b}\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )-\sqrt{\frac{a}{b}}\sqrt{1-\frac{a}{b}} \right ]</math> | ||
<math> | Let us consider the limit, <math>b\gg a.</math> We then have | ||
<math>I | <math>I\approx\frac{\pi}{2}\sqrt{b}-2\sqrt{a},</math> | ||
<math> | where we use the fact that <math>\cos^{-1}{x}\approx\frac{\pi}{2}-x.</math> | ||
Combining all of the above results, we get | |||
<math> T=\exp\left (-\frac{2\pi z_{1}e^{2}}{\hbar}\sqrt{\frac{2m}{E}}+\frac{4}{\hbar}\sqrt{4mz_{1}e^{2}a}\right ).</math> | |||
<math> | We may express this in terms of the velocity of the alpha particle by noting that the kinetic energy <math>E=\tfrac{1}{2}mv^{2}.</math> Doing so, we obtain | ||
<math> T=\exp\left (-\frac{4\pi z_{1}e^{2}}{\hbar v} \right )\exp\left (\frac{8e}{\hbar}\sqrt{z_{1}ma}\right ).</math> | |||
The first exponential factor is known as the Gamow factor. The Gamow factor determines the dependence of the transmission probability on the speed (or energy) of the alpha particle. | |||
The | |||
Back to [[WKB Approximation#Problems|WKB Approximation]] | Back to [[WKB Approximation#Problems|WKB Approximation]] |
Latest revision as of 23:29, 14 January 2014
At the turning point,
so that
Within the WKB approximation, the transmission probability is given by
where
We now evaluate the integral appearing in the exponential.
Let us define
We now make the substitution,
We then obtain
Let us consider the limit, We then have
where we use the fact that
Combining all of the above results, we get
We may express this in terms of the velocity of the alpha particle by noting that the kinetic energy Doing so, we obtain
The first exponential factor is known as the Gamow factor. The Gamow factor determines the dependence of the transmission probability on the speed (or energy) of the alpha particle.
Back to WKB Approximation