Phy5645/Gamowfactor: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 13: Line 13:
where <math>p(x)=\frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}.</math>
where <math>p(x)=\frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}.</math>


<math>\Theta ^{2} = e^{-2\int_{b}^{a} q(x)dx}</math>
We now evaluate the integral appearing in the exponential.
<math>\int_{a}^{b}p(x)\,dx=\sqrt{\frac{2m}{\hbar^2}}\int_{a}^{b}\sqrt{V(x)-E}\,dx = \sqrt{\frac{2m}{\hbar^{2}}}\int_{a}^{b}  
\sqrt{\frac{2z_{1}e^{2}}{x}-E}\,dx</math>


In the present problem <math>b= R</math> and <math>a = R_{c}</math>  
<math>=\sqrt{\frac{4mz_{1}e^{2}}{\hbar^2}}\int_{a}^{b} \sqrt{\frac{1}{x}-\frac{1}{b}}\,dx</math>


Now,
Let us define
<math>\int_{R}^{R_{c}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}(V(x)-E)^{\frac{1}{2}} dr =  \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}\int_{R}^{R_{c}}
\left(\frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{r}-E\right)^\frac{1}{2}dr</math>


<math>= \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}\left(\frac{2z_{1}e^{2}}{4\pi\epsilon_{0}}\right)^{\frac{1}{2}}\int_{R}^{R_{c}} \left [ \frac{1}{r} - \frac{1}{R_{c}}\right ]^{\frac{1}{2}}dr</math>
<math>I=\int_{a}^{b} \sqrt{\frac{1}{x}-\frac{1}{b}}\,dx.</math>


let, <math>I = \int_{R}^{R_{c}} \left [ \frac{1}{r} - \frac{1}{R_{c}}\right ]^{\frac{1}{2}}dr</math>
We now make the substitution,
<math>x=b\cos^{2}\theta.\!</math>  


We then obtain


Put,
<math>I= 2\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )} \sqrt{\frac{b\sin^{2}\theta}{\cos^{2}\theta}}\cos\theta\sin\theta\, d\theta</math>
<math>r= R_{0}cos^{2}\theta</math>  
and


<math>dr= -R_{0}2cos\theta sin\theta</math>
<math>=2\sqrt{b}\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )}\sin^{2}\theta\,d\theta </math>


<math>I= 2\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} \left( \frac{R_{c}sin^{2}\theta}{cos^{2}\theta}\right)^{\frac{1}{2}} cos\theta sin\theta d\theta</math>
<math>=\sqrt{b}\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )} ( 1-\cos{2\theta})\,d\theta</math>


<math>2R_{c}^{\frac{1}{2}}\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} sin^{2}\theta d\theta  </math>
<math>=\sqrt{b}\left [ \theta - \sin\theta \cos\theta  \right ]_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )}</math>


<math>I= R_{c}^{\frac{1}{2}}\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} ( 1-{cos2\theta}) d\theta</math>
<math>=\sqrt{b}\left \{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )-\sin\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )\right ]\cos\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )\right ]\right \}</math>


<math>I= R_{c}^{\frac{1}{2}}\left [ \theta - sin\theta cos\theta  \right ]_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}}</math>
<math>=\sqrt{b}\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )-\sqrt{\frac{a}{b}}\sqrt{1-\frac{a}{b}} \right ]</math>


<math>I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - sin \left(cos^{-1}\sqrt{\frac{R}{R_{c}}}\right) cos\left(cos^{-1}\sqrt{\frac{R}{R_{c}}}\right)  \right ]</math>
Let us consider the limit, <math>b\gg a.</math> We then have


<math>I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - \sqrt{\frac{R}{R_{c}}}\sqrt{1- \frac{R}{R_{c}}}  \right ]</math>
<math>I\approx\frac{\pi}{2}\sqrt{b}-2\sqrt{a},</math>


<math>I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - \sqrt{\frac{R}{R_{c}}- \left(\frac{R}{R_{c}}\right)^{2}}  \right ]</math>
where we use the fact that <math>\cos^{-1}{x}\approx\frac{\pi}{2}-x.</math>


Let us consider <math>R_{c} \gg R</math>
Combining all of the above results, we get


Then we have
<math> T=\exp\left (-\frac{2\pi z_{1}e^{2}}{\hbar}\sqrt{\frac{2m}{E}}+\frac{4}{\hbar}\sqrt{4mz_{1}e^{2}a}\right ).</math>


<math>I\cong \sqrt{R_{c}}\left(cos^{-1}\sqrt{\frac{R}{R_{c}}}-\sqrt{\frac{R}{R_{c}}} \right)</math>
We may express this in terms of the velocity of the alpha particle by noting that the kinetic energy <math>E=\tfrac{1}{2}mv^{2}.</math> Doing so, we obtain


where <math>cos^{-1}\sqrt{\frac{R}{R_{c}}} \cong \frac{\pi}{2} - \left(\frac{R}{R_{c}}\right)^{\frac{1}{2}}</math>
<math> T=\exp\left (-\frac{4\pi z_{1}e^{2}}{\hbar v} \right )\exp\left (\frac{8e}{\hbar}\sqrt{z_{1}ma}\right ).</math>


Setting, charge of <math>\alpha</math>particle = 2= <math>Z_{2}</math>(in general)
The first exponential factor is known as the Gamow factor. The Gamow factor determines the dependence of the transmission probability on the speed (or energy) of the alpha particle.
 
<math>\int q(x)dx = \left ( \frac{2Mz_{1}z_{2}e^{2}R_{c}}{\hbar^{2}4\pi\epsilon_0} \right )^{\frac{1}{2}}\left [\frac{\pi}{2} - 2\left(\frac{R}{R_{c}}\right)^{\frac{1}{2}}  \right ]</math>
 
Now <math> T\cong e^{-2\int q(x)dx} = exp\left [ -\frac{\pi z_{1}z_{2}e^{2}}{\hbar 4\pi\epsilon_0} \left (\frac{2M}{e}  \right )^{2} + \frac{4}{\hbar} \left ( \frac{2z_{1}z_{2}e^{2}MR}{4\pi\epsilon_0} \right )^{\frac{1}{2}}\right ]</math>
 
Now putting <math>E= \frac{1}{2}mv^{2}</math>, veloctiy of the particle
 
<math> T\cong exp\left ( \frac{-2\pi z_{1}z_{2}e^{2}}{4\pi\epsilon_0\hbar v} \right )exp \left ( \frac{32z_{1}z_{2}e^{2}MR}{4\pi\epsilon_0\hbar^{2} } \right )^{\frac{1}{2}}</math>
 
The 1st exponential term is known as the Gamow factor. The Gamow factor determines the dependence of the probability on the speed (or energy) of the alpha particle.


Back to [[WKB Approximation#Problems|WKB Approximation]]
Back to [[WKB Approximation#Problems|WKB Approximation]]

Latest revision as of 23:29, 14 January 2014

At the turning point,

so that

Within the WKB approximation, the transmission probability is given by

where

We now evaluate the integral appearing in the exponential.

Let us define

We now make the substitution,

We then obtain

Let us consider the limit, We then have

where we use the fact that

Combining all of the above results, we get

We may express this in terms of the velocity of the alpha particle by noting that the kinetic energy Doing so, we obtain

The first exponential factor is known as the Gamow factor. The Gamow factor determines the dependence of the transmission probability on the speed (or energy) of the alpha particle.

Back to WKB Approximation