Solution to Set 5: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 38: Line 38:
\end{vmatrix}
\end{vmatrix}
</math>
</math>
Running waves through a solid


<math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math>  
<math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math>  
Line 55: Line 57:
* '''Index<math>\alpha = 2\;</math> for optical branch'''
* '''Index<math>\alpha = 2\;</math> for optical branch'''


<math>u(R_n) \equiv e^{i k R_n} = cos (k a) \;<>
<math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math>  


<math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math>  
<math>u(R_n) \equiv e^{i k R_n} = cos (k a) \;</math>


<math>\Rightarrow - m \omega^2 e^{ikna} = -k [2e^{ik(na)} - e^{ik(n+1)a} - e^{ik(n-1)a}] \;</math>
<math>\Rightarrow - m \omega^2 e^{ikna} = -k [2e^{ik(na)} - e^{ik(n+1)a} - e^{ik(n-1)a}] \;</math>


<math>\Rightarrow m \omega^2 = k [2 - (e^{ika}  + e^{-ika}] \;</math>
<math>\Rightarrow m \omega^2 = k [2 - (e^{ika}  + e^{-ika})] \;</math>


<math>\Rightarrow \omega^2 = \frac{2k}{m} [1 - cos(ka)] \;</math>
<math>\Rightarrow \omega^2 = \frac{2k}{m} [1 - cos(ka)] \;</math>

Revision as of 05:56, 2 March 2009

I have no idea what I'm doing - KimberlyWynne 03:11, 2 March 2009 (EST)

Diatomic harmonic chain

Problem 1

Given:

  • a chain of atoms
  • with alternating masses and
  • connected with elastic springs with constant
  • moving only in the x-direction

Chainatoms.jpg

Derive the dispersion relation for this chain

  • Index for acoustic branch

Potential Energy

Eigenvectors of Modes A and B (defined arbitrarily)

Band Matrix

Running waves through a solid

where

= distance on some coordinate system

Derive and get:

  • Index for optical branch

Dispersionrelation.jpg

Problem 2

Determine the speed of sound for this chain. What is the lowest frequency of long-wavelength sound corresponding to the optical branch?

From my lecture notes:

where = speed of sound

Problem 3

Sketch the motion of the atoms corresponding to the edge of the Brillouin zone, both for the optical and the acoustic branch.

Problem 4

Determine the Debye temperature for this system, and determine the form of the specific heat in the limits of high and low temperatures.

Problem 5

Consider low temperatures () and determine the wavelength of the most abundant phonons (Hint: note the analogy with Wien's Law!)