Phy5646: Difference between revisions
JudyCherian (talk | contribs) |
JudyCherian (talk | contribs) |
||
Line 775: | Line 775: | ||
Therefore, | Therefore, | ||
<math>\langle{\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle] | {\delta\psi}\rangle+\langle{\delta\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle]|{\psi}\rangle=0 | <math>\langle{\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle] | {\delta\psi}\rangle+\langle{\delta\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle]|{\psi}\rangle=0 </math>. | ||
Revision as of 23:33, 12 April 2009
Welcome to the Quantum Mechanics B PHY5646 Spring 2009

This is the second semester of a two-semester graduate level sequence, the first being PHY5645 Quantum A. Its goal is to explain the concepts and mathematical methods of Quantum Mechanics, and to prepare a student to solve quantum mechanics problems arising in different physical applications. The emphasis of the courses is equally on conceptual grasp of the subject as well as on problem solving. This sequence of courses builds the foundation for more advanced courses and graduate research in experimental or theoretical physics.
The key component of the course is the collaborative student contribution to the course Wiki-textbook. Each team of students (see Phy5646 wiki-groups) is responsible for BOTH writing the assigned chapter AND editing chapters of others.
This course's website can be found here.
Outline of the course:
Stationary state perturbation theory in Quantum Mechanics
Very often, quantum mechanical problems cannot be solved exactly. We have seen last semester that an approximate technique can be very useful since it gives us quantitative insight into a larger class of problems which do not admit exact solutions. The technique we used last semester was WKB, which holds in the asymptotic limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar\rightarrow 0 } .
Perturbation theory is another very useful technique, which is also approximate, and attempts to find corrections to exact solutions in powers of the terms in the Hamiltonian which render the problem insoluble.
Typically, the (Hamiltonian) problem has the following structure
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}=\mathcal{H}_0+\mathcal{H}'}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}_0} is exactly soluble and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}'} makes it insoluble.
Raleigh-Shrödinger Peturbation Theory
We begin with an unperturbed problem, whose solution is known exactly. That is, for the unperturbed Hamiltonian, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}_0} , we have eigenstates, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle } , and eigenenergies, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_n } , that are known solutions to the Schrodinger eq:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}_0 |n\rangle = \epsilon_n |n\rangle }
To find the solution to the perturbed hamiltonian, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}}
, we first consider an auxiliary problem, parameterized by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda}
:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{H}^'}
If we attempt to find eigenstates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N(\lambda)\rangle} and eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n} of the Hermitian operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , and assume that they can be expanded in a power series of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n(\lambda) = E_n^{(0)} + \lambda E_n^{(1)} + ... + \lambda^j E_n^{(j)} + ...}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N(\lambda)\rangle = |\Psi_n^{(0)}\rangle + \lambda|\Psi_n^{(1)}\rangle + \lambda^2 |\Psi_n^{(2)}\rangle + ... \lambda^j |\Psi_n^{(j)}\rangle + ...}
then they must obey the equation,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} |N(\lambda)\rangle = E(\lambda) |N(\lambda)\rangle } .
Which upon expansion, becomes:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathcal{H}_0 + \lambda \mathcal{H}')\left(\sum_{j=0}^{\infty}\lambda^j |\Psi_n^{(j)}\rangle \right) = \left(\sum_{l=0}^{\infty} \lambda^l E_l\right)\left(\sum_{j=0}^{\infty}\lambda^j |\Psi_n^{(j)}\rangle \right)}
In order for this method to be useful, the perturbed energies must vary continuously with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} . Knowing this we can see several things about our, as yet undetermined perturbed energies and eigenstates. For one, as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda \rightarrow 0, |N(\lambda)\rangle \rightarrow |n\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n^{(0)} = \epsilon_n} for some unperturbed state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle} .
For convenience, assume that the unperturbed states are already normalized: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n | n \rangle = 1} , and choose normalization such that the exact states satisfy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|N(\lambda)\rangle=1} . Then in general Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N\rangle} will not be normalized, and we must normalize it after we have found the states. We have:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|N(\lambda)\rangle= 1 = \langle n |\Psi_n^{(0)}\rangle + \lambda \langle n |\Psi_n^{(1)}\rangle + \lambda^2 \langle n |\Psi_n^{(2)}\rangle + ... }
Coefficients of the powers of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} must match, so,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n | N_n^{(i)} \rangle = 0, i = 1, 2, 3, ... }
Which shows that, if we start out with the unperturbed state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle } , upon perturbation, the original state is added to a set of perturbation states, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi_n^{(0)}\rangle, |\Psi_n^{(1)}\rangle, ... } which are all orthogonal to the original state.
If we equate coefficients in the above expanded form of the perturbed Hamiltonian, we are provided with the corrected eigenvalues for whichever order of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} that we want. The first few are as follows,
1st Order Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 0 \rightarrow E_n^{(0)} = \epsilon_n } , which we already had from before,
2nd Order Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 1 \rightarrow \mathcal{H}_0 |\Psi_n^{(1)}\rangle + \mathcal{H}' |\Psi_n^{(0)}\rangle = E_n^{(1)} |\Psi_n^{(0)}\rangle + E_n^{(0)} |\Psi_n^{(1)}\rangle } , taking the scalar product of this result of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\langle} , and using our previous results, we get: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n^{(1)} = \langle n|\mathcal{H}'|n\rangle }
kth order In general, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n^{(k)} = \langle n | \mathcal{H}' | N_n^{(k - 1)} \rangle }
I have skipped a few steps since they are covered in Baym anyways. This result provides us with a recursive relationship for the Eigenenergies of the perturbed state, so that we have access to the eigenenergies for an state of arbitrary order in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} .
What about the eigenstates?
Brillouin-Wigner Peturbation Theory
This is another type of perturbation theory. Using a basic formula derived from the Schroedinger equation, you can find an approximation for any power of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda } required using an iterative process. Starting with the Schroedinger equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} ({\mathcal H}_o+\lambda {\mathcal H}')|N\rangle &= E_n|N\rangle \\ \lambda {\mathcal H}'|N\rangle &= (E_n-{\mathcal H}_o)|N\rangle \\ \langle n|(\lambda {\mathcal H}'|N\rangle) &= \langle n|(E_n-{\mathcal H}_o)|N\rangle \\ \lambda \langle n|{\mathcal H}'|N\rangle &= (E_n-\epsilon_n)\langle n|N\rangle \\ \end{align} }
If we choose to normalize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|N \rangle = 1 } , then so far we have: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (E_n-\epsilon_m) = \lambda\langle n|{\mathcal H}'|N\rangle } , which is still an exact expression (no approximation have been made yet). The wavefunction we are interested in, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N\rangle } can be rewritten as a summation of the eigenstates of the (unperturbed, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal H}_o } ) Hamiltonian:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} |N\rangle &= \sum_m|m\rangle\langle m|N\rangle\\ &= |n\rangle\langle n|N\rangle + \sum_{m\neq n}|m\rangle\langle m|N\rangle\\ &= |n\rangle + \sum_{m\neq n}|m\rangle\frac{\lambda\langle m|{\mathcal H}'|N\rangle}{(E_n-\epsilon_m)}\\ \end{align} }
So now we have a recursive relationship for both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N\rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n = \epsilon_n+\lambda\langle n|{\mathcal H}'|N\rangle } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N\rangle } can be written recursively to any order of desired
where can be written recursively to any order of desired
For example, the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N\rangle } to a third order in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda } would be:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} |N\rangle &= |n\rangle + \lambda\sum_{m\neq n}|m\rangle\frac{\langle m|{\mathcal H}'}{(E_n-\epsilon_m)}\left(|n\rangle + \lambda\sum_{j\neq n}|j\rangle\frac{\langle j|{\mathcal H}'}{(E_n-\epsilon_j)}\left(|n\rangle + \lambda\sum_{k\neq n}|k\rangle\frac{\langle k|{\mathcal H}'|n\rangle}{(E_n-\epsilon_k)}\right)\right)\\ &= |n\rangle + \lambda\sum_{m\neq n}|m\rangle\frac{\langle m|{\mathcal H}'|n\rangle}{(E_n-\epsilon_m)} + \lambda^2\sum_{m,j\neq n}|m\rangle\frac{\langle m|{\mathcal H}'|j\rangle\langle j|{\mathcal H}'|n\rangle}{(E_n-\epsilon_m)(E_n-\epsilon_j)} + \lambda^3\sum_{m,j,k\neq n}|m\rangle\frac{\langle m|{\mathcal H}'|j\rangle\langle j|{\mathcal H}'|k\rangle\langle k|{\mathcal H}'|n\rangle}{(E_n-\epsilon_m)(E_n-\epsilon_j)(E_n-\epsilon_k)}\\ \end{align} }
Degenerate Perturbation Theory
If more than one eigenstate for the Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal H}_o } has the same energy value, the problem is said to be degenerate. If we try to get a solution using perturbation theory, we fail, since Rayleigh-Schroedinger PT includes terms like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/(\epsilon_n-\epsilon_m) } .
Instead of trying to use these (degenerate) eigenstates with perturbation theory, if we start with the correct linear combinations of eigenstates, regular perturbation theory will no longer fail! So the issue now is how to find these linear combinations.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{|n_a\rangle,|n_b\rangle,|n_c\rangle,\dots\} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longrightarrow } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{|n_{\alpha}\rangle,|n_{\beta}\rangle,|n_{\gamma}\rangle,\dots\} } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n_{\alpha}\rangle = \sum_iC_{\alpha,i}|n_i\rangle } etc
The general procedure for doing this type of problem is to create the matrix with elements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n_a|{\mathcal H}'|n_b\rangle } formed from the degenerate eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal H}_o } . This matrix can then be diagonalized, and the eigenstates of this matrix are the correct linear combinations to be used in non-degenerate perturbation theory.
One of the well-known examples of an application of degenerate perturbation theory is the Stark Effect. If we consider a Hydrogen atom with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2 } in the presence of an external electric field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\mathcal E}={\mathcal E}\hat{z} } . The Hamiltonian for this system is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal H}={\mathcal H}_o-e{\mathcal E}z } . The eigenstates of the system are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{|2S\rangle,|2P_{-1}\rangle,|2P_0\rangle,|2P_{+1}\rangle\} } . The matrix of the degenerate eigenstates and the perturbation is:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \langle n_i|{\mathcal H}'|n_j\rangle &\longrightarrow \left(\begin{array}{cccc}\langle2S|-e{\mathcal E}z|2S\rangle&\langle2S|-e{\mathcal E}z|2P_{-1}\rangle&\langle2S|-e{\mathcal E}z|2P_0\rangle&\langle2S|-e{\mathcal E}z|2P_{+1}\rangle\\\langle2P_{-1}|-e{\mathcal E}z|2S\rangle&\langle2P_{-1}|-e{\mathcal E}z|2P_{-1}\rangle&\langle2P_{-1}|-e{\mathcal E}z|2P_0\rangle&\langle2P_{-1}|-e{\mathcal E}z|2P_{+1}\rangle\\\langle2P_0|-e{\mathcal E}z|2S\rangle&\langle2P_0|-e{\mathcal E}z|2P_{-1}\rangle&\langle2P_0|-e{\mathcal E}z|2P_0\rangle&\langle2P_0|-e{\mathcal E}z|2P_{+1}\rangle\\\langle2P_{+1}|-e{\mathcal E}z|2S\rangle&\langle2P_{+1}|-e{\mathcal E}z|2P_{-1}\rangle&\langle2P_{+1}|-e{\mathcal E}z|2P_0\rangle&\langle2P_{+1}|-e{\mathcal E}z|2P_{+1}\rangle\\\end{array}\right)\\ &\longrightarrow \left(\begin{array}{cccc}0&0&\langle2S|-e{\mathcal E}z|2P_0\rangle&0\\0&0&0&0\\\langle2P_0|-e{\mathcal E}z|2S\rangle&0&0&0\\0&0&0&0\\\end{array}\right)\\ &\longrightarrow \left(\begin{array}{cccc}0&0&-3e{\mathcal E}a_B&0\\0&0&0&0\\-3e{\mathcal E}a_B&0&0&0\\0&0&0&0\\\end{array}\right)\\ \end{align} }
The full arguments as to how most of these terms are zero is worked out in G Baym's "Lectures on Quantum Mechanics" in the section on Degenerate Perturbation Theory. The correct linear combination of the degenerate eigenstates ends up being
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{|2P_{-1}\rangle,|2P_{+1}\rangle,\frac{1}{\sqrt{2}}\left(|2S\rangle+|2P_0\rangle\right),\frac{1}{\sqrt{2}}\left(|2S\rangle-|2P_0\rangle\right)\} }
Because of the perturbation due to the electric field, the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2P_{-1}\rangle } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2P_{+1}\rangle } states will be unaffected. However, the energy of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2S\rangle } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2P_0\rangle } states will have a shift due to the electric field.
Time dependent perturbation theory in Quantum Mechanics
Previously, we learned the time independent perturbation theory which can be applied on various systems in which a little change in the Hamiltonian appears as a
correction in the form of a series for the energy and wave functions. However, this stationary approach cannot be used to describe the interaction of electromagnetic field
with atoms i.e. photon with Hydrogen atom. This leads us to the Time Dependent Perturbation Theory.
One of the main tasks of this theory is the calculation of transition probabilities from one state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_n \rangle}
to another state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_m \rangle}
that occurs under the influence of time
dependent potential. Generally, transition of a system from one state to another state only makes sense if the potential acts only within a finite time period from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!t = 0}
to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!t = T}
. Except for this time period, the total energy is a constant of motion which can be measured.
We start with the Time Dependent Schrodinger Equation
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t}|\psi_t^0 \rangle = H_0 |\psi_t^0\rangle, \qquad t<t_0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (2.1)}
then assuming that the perturbation acts after time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!t_0} , we get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t}|\psi_t \rangle = (H_0 + V_t)|\psi_t\rangle, \qquad t>t_0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\;\; (2.2)}
The problem therefore consists of finding the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle}
with boundary condition Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle = |\psi_t^0\rangle}
for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \leq t_0}
. However, such a problem is not generally soluble.
Therefore, we limit ourselves to the problems in which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!V_t}
is small.
Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!V_t} is small, the time dependence of the solution will largely come from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!H_0} . So we use
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_t\rangle = e^{-i H_0 t/\hbar}|\psi(t)\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\; (2.3)}
Which we substitute into the Schrodinger Equation to get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle=V(t)|\psi(t)\rangle \quad \text{where}\quad V(t) = e^{i H_0 t/\hbar}V_te^{-i H_0 t/\hbar}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (2.4)}
In this equation we work using interaction representation. Now, we integrate equation #(2.4) to get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{t_o}^{t}dt \frac{\partial}{\partial t}|\psi(t)\rangle = \psi(t) - \psi(t_0) = \frac{1}{i\hbar}\int_{t_0}^{t}dt' V(t')|\psi(t')\rangle}
or
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle = |\psi(t_0)\rangle + \frac{1}{i\hbar}\int_{t_0}^{t}dt' V(t')|\psi(t')\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\ (2.5)}
Equation #(2.5) can be iterated by inserting this equation itself as the integrand in the r.h.s. We can then write equation #(2.5) as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle = |\psi(t_0)\rangle + \frac{1}{i\hbar}\int_{t_0}^{t}dt' V(t')\left(|\psi(t_0)\rangle + \frac{1}{i\hbar}\int_{t_0}^{t}dt'' V(t'')|\psi(t'')\rangle\right), \qquad t''<t'\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\ (2.6)}
which can be written compactly as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle = T e^{\frac{i}{t}\int_{t_0}^{t}V(t')dt'}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\;\ (2.7)}
With T as the time ordering operator to ensure it can be expanded in series in the correct order. For now, we consider only the correction to the first order in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!V(t)}
. If we
limit ourselves to the first order we use
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle = |\psi(t_0)\rangle + \frac{1}{i\hbar}\int_{t_0}^{t}dt'V(t')|\psi(t_0)\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\;\;\ (2.8)}
We want to see the system undergoes a transition to another state, say Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle}
. So we project the wave function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t)\rangle}
to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle}
. From now on, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi(t_0)\rangle = |0\rangle}
for brevity. Projecting into state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle}
and assuming Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|0\rangle =0 }
we get,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}\langle n|\psi(t)\rangle & = \langle n|0\rangle + \frac{1}{i\hbar}\int_{t_0}^{t}dt'\langle n|V(t')|0\rangle\\ & = \frac{1}{i\hbar}\int_{t_0}^{t}dt'\langle n|e^{\frac{1}{\hbar}H_0 t}V_{t'}e^{-\frac{1}{\hbar}H_0 t}|0\rangle\\ & = \frac{1}{i\hbar}\int_{t_0}^{t}dt'e^{\frac{i}{\hbar}(\epsilon_n - \epsilon_0)t'}\langle n|V_{t'}|0\rangle \end{align}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\,\ (2.9)}
Expression #(2.9) is the probability amplitude of transition. Therefore, we square the final expression to get the probability of having the system in state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle}
at time t.
Squaring, we get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{0 \rightarrow n}{P(t)} = |\langle n|\psi(t)\rangle|^2 = \left|\frac{1}{i\hbar}\int_{t_0}^{t}dt' e^{\frac{i}{\hbar}(\epsilon_n - \epsilon_0)t'}\langle n|V_{t'}|0\rangle\right|^2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\, (2.10)}
For example, let us consider a potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!V_t} which is turned on sharply at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!t_0} , but independent of t thereafter. Furthermore, we let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!t_0 = 0} for convenience. Therefore :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_t = \begin{cases} 0 &\mbox{if} \qquad t<0\\ V &\mbox{if} \qquad t>0 \end{cases} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \underset{0 \rightarrow n}{P(t)} & = \left|\frac{1}{i\hbar}\int_{0}^{t}dt' e^{\frac{i}{\hbar}(\epsilon_n - \epsilon_0)t'}\langle n|V|0\rangle\right|^2\\ & = \left|\frac{1}{i\hbar}\frac{e^{\frac{i}{\hbar}(\epsilon_n - \epsilon_0)t'}}{\frac{i}{\hbar}(\epsilon_n - \epsilon_0)}\langle n|V|0\rangle\right|^2\\ & = \frac{sin^2\left(\frac{\epsilon_n - \epsilon_0}{2\hbar}t\right)}{\left(\frac{\epsilon_n - \epsilon_0}{2}\right)^2}|\langle n|V|0 \rangle|^2 \end{align}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\; (2.11) }
The plot of the probability vs. is given as
with so we conclude that as the time grows, the probability is the largest for the transition to conserve the energy to within an amount given in that relation.
Now, we imagine shining a light of a certain frequency on a Hydrogen atom. We probably ended up getting the atom at a certain bound state. However it might be ionized as
well. The problem with ionization is the fact that the final state is a continuum, so we cannot just simply pick up a state to end with i.e. a plane wave with a specific k.
Furthermore, if the wave function is normalized, we will have a factor which goes to zero if V is very large, but we know that ionization exists. So what we do is to
measure the final state from k to k+dk.
Let's suppose that the state is one of the continuum state, then what we could ask is the probability that the system makes transition to a small group of states about
, not to a specific value of . For example, for a free particle, what we can find is the transition probability from initial state to a small group of states, viz. , or in
other words the transition probability to an element of phase space
The next step is a mathematical trick. We use
to derive a relation
Which, if used in the equation #(2.11) gives
or as a rate of transition, :
which is The Fermi Golden Rule. Using this formula, we should keep in mind to sum over all (continuum) final states.
To make things clear, let's try to calculate the transition probability for a system from a state to a final state due to a potential
What we want is the rate of transition, or actually scattering in this case, into a small solid angle . So, we must calculate
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k'\in d\Omega}\underset{\vec{k}\rightarrow \vec{k'}}{\Gamma} }
The sum over states for continuum can be calculated using integral
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{\vec{k'}\in d\Omega'} \quad \longrightarrow \quad d\Omega'\int d\epsilon_{k'}\frac{L^3 m k'}{(2\pi)^3 \hbar^2}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\;\;\ (2.16)}
Therefore,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{\vec{k}{k'\in d\Omega'}}{d\Gamma} = \frac{d\Omega'}{L^3}\frac{mk}{4\pi^2\hbar^3}|V_{k'k}|^2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\;\;\ (2.17)}
The flux of particles per incident particle of momentum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar k} in a volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!L^3} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar k / m L^3} , so
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\Gamma}{d\Omega (\frac{\bar k}{m L^3})} = \frac{m^2}{4\pi^2\hbar^4}|V_{k'k}|^2 = \frac{d\sigma}{d\Omega}} , in Born Approximation
This result makes sense since our potential does not depend on time, so what happened here is that we sent a particle with wave vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{k}}
through a potential and later detect
a particle coming out from that potential with wave vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{k'}}
. So, it is a scattering problem solved using a different method.
Interaction of radiation and matter
Quantization of electromagnetic radiation
Classical view
Let's use transverse gauge (sometimes called Coulomb gauge):
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi (\mathbf{r},t)=0 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \cdot \mathbf{A}=0}
In this gauge the electromagnetic fields are given by:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{E}(\mathbf{r},t)=-\frac{1}{c}\frac{\partial \mathbf{A} }{\partial t}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}(\mathbf{r},t)=\nabla \times \mathbf{A}}
The energy in this radiation is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon = \frac{1}{8\pi} \int d^{3}\mathbf{r} (\mathbf{E}^{2}+\mathbf{B}^{2})}
The rate and direction of energy transfer are given by poynting vector
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{P} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{B} }
The radiation generated by classical current is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box \mathbf{A} = -\frac{4\pi}{c} \mathbf{j}}
Where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box} is the d'Alembert operator. Solutions in the region where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}=0} are given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r},t) = \alpha \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\alpha^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega=c|\mathbf{k}|} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\lambda}\cdot \mathbf{k}=0 } in order to satisfy the transversality. Here the plane waves are normalized with respect to some volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . This is just for convenience and the physics won't change. We can choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\lambda}\cdot\boldsymbol{\lambda}^{*}=1} . Notice that in this writing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}} is a real vector.
Let's compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . For this
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{E}(\mathbf{r},t) & =-\frac{1}{c}\frac{\partial \mathbf{A} }{\partial t} \\ & =-\frac{1}{c\sqrt{V}}\frac{\partial}{\partial t}\left[\alpha \boldsymbol{\lambda}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}+\alpha^{*} \boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ & =-\frac{i\omega}{c\sqrt{V}}\left[-\alpha \boldsymbol{\lambda} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}+\alpha^{*} \boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \mathbf{E}^{2}(\mathbf{r},t) & = -\frac{\omega^{2}}{c^{2}V}\left[\alpha^{2} \boldsymbol{\lambda}^{2} e^{2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha\alpha^{*}\boldsymbol{\lambda}\cdot\boldsymbol{\lambda}^{*}-\alpha^{*}\alpha\boldsymbol{\lambda}^{*}\cdot\boldsymbol{\lambda}+\alpha^{*2} \boldsymbol{\lambda}^{*2} e^{-2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \end{align} }
Taking the average, the oscillating terms will disappear. Then we have
It is well known that for plane waves , where is the direction of . This clearly shows that . However let's see this explicitly:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}(\mathbf{r},t) & =\nabla \times\mathbf{A}\\ & =\nabla \left[\alpha \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\alpha^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right] \\ \end{align} }
Each component is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}_{i}(\mathbf{r},t)& =\frac{1}{{\sqrt{V}}}\left[\alpha \varepsilon _{ijk}\partial_{j} \left(\boldsymbol{\lambda}_{k}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right)+\alpha^{*} \varepsilon _{ijk}\partial_{j} \left(\boldsymbol{\lambda}^{*}_{k}e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right)\right] \\ & =\frac{i}{{\sqrt{V}}}\left[\alpha \varepsilon _{ijk}\mathbf{k}_{j} \boldsymbol{\lambda}_{k}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha^{*} \varepsilon _{ijk}\mathbf{k}_{j} \boldsymbol{\lambda}^{*}_{k}e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \end{align} }
Then
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}(\mathbf{r},t) & =\frac{i}{{\sqrt{V}}}\left[\alpha \mathbf{k}\times\boldsymbol{\lambda}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha^{*} \mathbf{k}\times\boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \mathbf{B}^{2}(\mathbf{r},t) & =\frac{-1}{{V}}\left[\alpha \mathbf{k}\times\boldsymbol{\lambda}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha^{*} \mathbf{k}\times\boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ & =\frac{-1}{{V}}\left[\alpha^{2} (\mathbf{k}\times\boldsymbol{\lambda})^{2}e^{2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha \alpha^{*}(\mathbf{k}\times\boldsymbol{\lambda})\cdot(\mathbf{k}\times\boldsymbol{\lambda}^{*})-\alpha^{*} \alpha(\mathbf{k}\times\boldsymbol{\lambda}^{*})\cdot(\mathbf{k}\times\boldsymbol{\lambda})+\alpha^{*2} (\mathbf{k}\times\boldsymbol{\lambda}^{*})^{2} e^{-2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \end{align} }
Again taking the average the oscillating terms vanish. Then we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}^{2}(\mathbf{r}) & =\frac{1}{{V}}\left[\alpha \alpha^{*}+\alpha^{*} \alpha\right](\mathbf{k}\times\boldsymbol{\lambda})\cdot(\mathbf{k}\times\boldsymbol{\lambda}^{*}) \\ & =\frac{1}{{V}}\left[\alpha \alpha^{*}+\alpha^{*} \alpha\right][\mathbf{k}^{2}(\boldsymbol{\lambda}\cdot\boldsymbol{\lambda^{*}})-(\mathbf{k}\cdot\boldsymbol{\lambda^{*}})\cdot(\mathbf{k}\cdot\boldsymbol{\lambda^{*}})] \\ & =\frac{2}{{V}}|\alpha|^{2}\mathbf{k}^{2}\\ &=2\frac{\omega^{2}}{c^{2}V}|\alpha|^2 \\ &= \mathbf{E}^{2}(\mathbf{r},t)\\ \end{align} }
Finally the energy of this radiation is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \varepsilon &= \frac{1}{8\pi} \int d^{3}\mathbf{r} (\mathbf{E}^{2}+\mathbf{B}^{2}) \\ &=\frac{1}{4\pi} \int d^{3}\mathbf{r}\; \mathbf{E}^{2}\\ &=\frac{1}{4\pi} \int d^{3}\mathbf{r} \left(2\frac{\omega^{2}}{c^{2}V}|\alpha|^2\right)\\ &=\frac{\omega^{2}}{2\pi c^{2}}|\alpha|^2\\ \end{align}}
So far we have treated the potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathbf{r},t)} as a combination of two waves with the same frequency. Now let's extend the discussion to any form of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathbf{r},t)} . To do this we can sum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathbf{r},t)} over all values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k} and \boldsymbol{\lambda}} :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} A(\mathbf{r},t)=\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[A_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}} \right]\\ \end{align}}
To calculate the energy with use the fact that any exponential time-dependent term is in average zero. Therefore in the previous sum all cross terms with different Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}} vanishes. Then it is clear that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{E}^{2}(\mathbf{r}) & = \sum_{\mathbf{k}\boldsymbol{\lambda}}\frac{\omega^{2}}{c^{2}V}\left[A_{\mathbf{k}\boldsymbol{\lambda}}A_{\mathbf{k}\boldsymbol{\lambda}}^{*}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*}A_{\mathbf{k}\boldsymbol{\lambda}}\right] \\ \mathbf{B}^{2}(\mathbf{r}) & = \sum_{\mathbf{k}\boldsymbol{\lambda}}\frac{\mathbf{k}^2}{V}\left[A_{\mathbf{k}\boldsymbol{\lambda}}A_{\mathbf{k}\boldsymbol{\lambda}}^{*}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*}A_{\mathbf{k}\boldsymbol{\lambda}}\right] \\ \end{align} }
Then the energy is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \varepsilon &= \frac{1}{8\pi} \int d^{3}\mathbf{r} (\mathbf{E}^{2}+\mathbf{B}^{2}) \\ &=\frac{1}{4\pi} \int d^{3}\mathbf{r}\; \mathbf{E}^{2}\\ &=\frac{1}{4\pi} \int d^{3}\mathbf{r} \sum_{\mathbf{k}\boldsymbol{\lambda}}\frac{\omega^{2}}{c^{2}V}\left[A_{\mathbf{k}\boldsymbol{\lambda}}A_{\mathbf{k}\boldsymbol{\lambda}}^{*}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*}A_{\mathbf{k}\boldsymbol{\lambda}}\right] \\ &=\frac{1}{4\pi} \sum_{\mathbf{k}\boldsymbol{\lambda}}\frac{\omega^{2}}{c^{2}}\left[A_{\mathbf{k}\boldsymbol{\lambda}}A_{\mathbf{k}\boldsymbol{\lambda}}^{*}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*}A_{\mathbf{k}\boldsymbol{\lambda}}\right] \\ \end{align}}
Let's define the following quantities:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} Q_{\mathbf{k}\boldsymbol{\lambda}}&=\frac{1}{\sqrt{4\pi}c}(A_{\mathbf{k}\boldsymbol{\lambda}}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*})\\ P_{\mathbf{k}\boldsymbol{\lambda}}&=\frac{-i\omega}{\sqrt{4\pi}c}(A_{\mathbf{k}\boldsymbol{\lambda}}-A_{\mathbf{k}\boldsymbol{\lambda}}^{*})\\ \end{align}}
Notice that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \omega^{2} Q_{\mathbf{k}\boldsymbol{\lambda}}^{2}&=\frac{\omega^{2}}{4\pi c^{2}}(A_{\mathbf{k}\boldsymbol{\lambda}}^{2}+A_{\mathbf{k}\boldsymbol{\lambda}}\cdot A_{\mathbf{k}\boldsymbol{\lambda}}^{*}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*}\cdot A_{\mathbf{k}\boldsymbol{\lambda}}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*2})\\ P_{\mathbf{k}\boldsymbol{\lambda}}^{2}&=\frac{-\omega^{2}}{4\pi c^{2}}(A_{\mathbf{k}\boldsymbol{\lambda}}^{2}-A_{\mathbf{k}\boldsymbol{\lambda}}\cdot A_{\mathbf{k}\boldsymbol{\lambda}}^{*}-A_{\mathbf{k}\boldsymbol{\lambda}}^{*}\cdot A_{\mathbf{k}\boldsymbol{\lambda}}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*2})\\ \end{align}}
Adding
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} P_{\mathbf{k}\boldsymbol{\lambda}}^{2}+\omega^{2} Q_{\mathbf{k}\boldsymbol{\lambda}}^{2}&=\frac{\omega^{2}}{2\pi c^{2}}(A_{\mathbf{k}\boldsymbol{\lambda}}\cdot A_{\mathbf{k}\boldsymbol{\lambda}}^{*}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*}\cdot A_{\mathbf{k}\boldsymbol{\lambda}})\\ \end{align}}
Then the energy (in this case the Hamiltonian) can be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} H=\frac{1}{2}\sum_{\mathbf{k}\boldsymbol{\lambda}} P_{\mathbf{k}\boldsymbol{\lambda}}^{2}+\omega^{2} Q_{\mathbf{k}\boldsymbol{\lambda}}^{2} \end{align}}
This has the same form as the familiar Hamiltonian for a harmonic oscillator.
Note that,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{\partial H_cl}{\partial Q_{k, \lambda}} = - \dot{P}_{k, \lambda} \\ \frac{\partial H_cl}{\partial P_{k, \lambda}} = - \dot{Q}_{k, \lambda} \end{align}}
The makeshift variables, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{k, \lambda}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{k, \lambda}} are canonically conjugate.
We see that the classical radiation field behaves as a collection of harmonic oscillators, indexed by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}} adn Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\lambda}} , whose frequencies depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathbf{k}|} .
From classical mechanics to quatum mechanics for radiation
As usual we proceed to do the canonical quantization:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} P_{\mathbf{k}\boldsymbol{\lambda}} & \to \mathbf{P}_{\mathbf{k}\boldsymbol{\lambda}}\\ Q_{\mathbf{k}\boldsymbol{\lambda}} & \to \mathbf{Q}_{\mathbf{k}\boldsymbol{\lambda}}\\ \end{align}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} A_{\mathbf{k}\boldsymbol{\lambda}} & \to \sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\;\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}\; , \; [\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}},\mathbf{a}^{\dagger}_{\mathbf{k}\boldsymbol{\lambda}}]=\delta_{\mathbf{kk'}}\delta_{\boldsymbol{\lambda \lambda'}}\\ \end{align}}
Where last are quantum operators. The Hamiltonian can be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{H}_{radiation}&=\sum_{\mathbf{k}\boldsymbol{\lambda}}\hbar \omega_{\mathbf{k}}(\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}} \mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}+\frac{1}{2}) &=\frac{1}{2}\sum_{\mathbf{k}\boldsymbol{\lambda}}\hbar \omega_{\mathbf{k}}(\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}} \mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}+\mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}} \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}})\\ \end{align}}
The classical potential can be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underbrace{A(\mathbf{r},t)=\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[A_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]}_\textrm{Classical Vector potential}\;\;\;\longrightarrow\;\;\; \underbrace{\mathbf{A}_{int}(\mathbf{r},t)=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]}_\textrm{Quantum Operator} }
Notice that the quantum operator is time dependent. Therefor we can identify it as the field operator in interaction representation. (That's the reason to label it with int). Let's find the Schrodinger representation of the field operator:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{A}(\mathbf{r})&=e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}\mathbf{A}_{int}(\mathbf{r},t)e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\\ &=e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}\left[\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]\right]e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\\ &=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\left[e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t} \mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\right] \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\left[ e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\right] \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]\\ &=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}e^{i\omega t}\right] \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\left[ \mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} e^{-i\omega t}\right] \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]\\ &=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}}+\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} \boldsymbol{\lambda}^{*} \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}}\right]\\ \end{align}}
COMMENTS
- The meaning of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{H}_{radiation}} is as following: The classical electromagnetic field is quantized. This quantum field exist even if there is not any source. This means that the vacuum is a physical object who can interact with matter. In classical mechanics this doesn't occur because, fields are created by sources.
- Due to this, the vacuum has to be treated as a quantum dynamical object. Therefore we can define to this object a quantum state.
- The perturbation of this quantum field is called photon (it is called the quanta of the electromagnetic field).
ANALYSIS OF THE VACUUM AT GROUND STATE
Let's call Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |0\rangle} the ground state of the vacuum. The following can be stated:
- The energy of the ground state is infinite. To see this notice that for ground state we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{H}_{radiation}&=\sum_{\mathbf{k}\boldsymbol{\lambda}} \frac{1}{2} \hbar \omega_{\mathbf{k}}=\infin \end{align}}
- The state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}|0\rangle} represent an exited state of the vacuum with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}(1+1/2)} . This means that the extra energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}} is carried by a single photon. Therefore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}} represent the creation operator of one single photon with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}} . In the same reasoning, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}} represent the annihilation operator of one single photon.
- Consider the following normalized state of the vacuum:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{2}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}|0\rangle}
. At the first glance we may think that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}}
creates a single photon with energy . However this interpretation is forbidden in our model. Instead, this operator will create two photons each of the carryng the energy .
Proof
Suppose that creates a single photon with energy . We can find an operator who can create a photon with the same energy . This means that
Let's see if this works. Using commutation relationship we have
Replace the highlighted part by
Since , the initial assumption is wrong, namely:
This means that cannot create a single photon with energy . Instead it will create two photons each of them with energy
ALGEBRA OF VACUUM STATES
A general vacuum state can be written as
where is the number of photons in the state which exist in the vacuum. Using our knowledge of harmonic oscillator we conclude that this state can be written as
Also it is clear that
Matter + Radiation
Hamiltonian of Single Particle in Presence of Radiation (Gauge Invariance)
The Hamiltonian of a single charged particle in presence of E&M potentials is given by
The Schrödinger equation is then
Since a gauge transformation
left invariant the E&M fields, we expect that which is an observable it is also gauge independent. Since is independent of the phase choice, we can relate this phase with the E&M gauge transformation. In other words, the phase transformation with E&M transformation must leave Schrödinger equation invariant. This phase transformation is given by:
Let's see this in detail. We want to see if:
Let's put the transformations:
Replacing
Finally let's write the Hamiltonian in the following way
Where is the Hamiltonian without external fields (say hydrogen atom) and is the interaction part with the radiation.
Hamiltonian of Multiple Particles in Presence of Radiation
Light Absorption and Induced Emmition
Use of Quantized Radiation Field
Einstein's Model of Absorption and Induced Emmision
Details of Spontaneous Emission
Electric Dipole Transitions
Scattering of Light
Non-perturbative methods
One important method in approximate determination of wave function and eigenvalue is Variational Principle. Variation method is very general one that it can be used whenever the equations can be put into variational form.Variational principle is the springboard to many numerical computation.
Principle of the Variational Method
Consider a completely arbitrary system with time independent Hamiltonian and we assume that it's entire spectrum is discrete and non-degenerate.
= ; n = 0,1,2
Let's apply the variational principle to find the ground state of the system.Let be an arbitrary ket of the system. We can define the mean value of the Hamiltonian
.
The variational principle states that
The equality is applicable only iff is the exact eigenstate of the Hamiltonian and has an eigenvalue
Since the exact eigenfunctions of form a complete set, we can express our arbitrary ket as a linear combination of the exact wavefunction.Therefore,we have
Multiplying both sides by we get
However, . So, we can write the above equation as
.
Or
.
with , thus proving
Thus gives an upper bound to the exact ground state energy.
Generalization of Variational Principle: The Ritz Theorem.
We claim that the expectation value of the Hamiltonian is stationary in the neighborhood of its discrete eigenvalues. Let us again consider the expectation value of the Hamiltonian .
.
Here is considered as a functional of . Let us define the variation of such that goes to where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle | \delta \psi\rangle } is considered to be infinetly small. Let us rewrite Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad \text{(1)}} as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\mathcal{H}\rangle\langle{\psi}|{\psi}\rangle=\langle{\psi}|\mathcal{H}|{\psi}\rangle\qquad \text{(5)}} .
Differentiating the above relation,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle{\psi}|{\psi}\rangle\delta\langle\mathcal{H}\rangle+\langle\mathcal{H}\rangle[\langle{\psi}|\delta{\psi}\rangle+\langle\delta{\psi}|{\psi}\rangle]=\langle{\psi}|\mathcal{H}|{\delta\psi}\rangle+\langle{\delta\psi}|\mathcal{H}|{\psi}\rangle\qquad \text{(6)}} .
However, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\mathcal{H}\rangle}
is just a c-number, so we can rewrite Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad \text{(6)}}
as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle{\psi} | {\psi}\rangle\delta\langle\mathcal{H}\rangle =\langle{\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle] | {\delta\psi}\rangle+\langle{\delta\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle]|{\psi}\rangle\qquad \text{(7)}}
.
If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta|\mathcal{H}\rangle=0 }
, then the mean value of the Hamiltonian is stationary.
Therefore,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle{\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle] | {\delta\psi}\rangle+\langle{\delta\psi} | [\mathcal{H}-\langle\mathcal{H}\rangle]|{\psi}\rangle=0 } .
Define,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |{\varphi}\rangle =|[\mathcal{H}-\langle\mathcal{H}\rangle] | {\psi}\rangle \qquad \text{(8)}} .
Hence,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad \text{(7)}} become
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle{\varphi}|\delta{\psi}\rangle+ \langle\delta{\varphi}|{\psi}\rangle=0 \qquad \text{(9)}} .
We can define the variation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |{\psi}\rangle}
as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\delta{\psi}\rangle=\delta\lambda|\delta{\psi}\rangle}
with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda}
being a small (real) number. Therefore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad\text{(9)}}
can be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle{\psi}|{\psi}\rangle \delta\lambda=0 \qquad\text{(10)}}
Since the norm is zero, the wave function itself should be zero. Keeping this in mind, if we analyze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad{(8)}} it's clear that we can rewrite it as an eigenvalue problem.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}|{\psi}\rangle=\langle\mathcal{H}\rangle{\psi}\rangle \qquad \text{(11)}} .
Finally we can say that expectation value of the Hamiltonian is stationary iff the arbitrary wavefunction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |{\psi}\rangle}
is actually the eigenvector of the Hamiltonian with the stationary values of the expectation values of the Hamiltonian, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\mathcal{H}\rangle }
being precisely the eigen values of the Hamiltonian.
The general method is to find a approximate trial wavefunction that contain one or more parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{\alpha, \beta, \gamma} } . If the expectation value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\mathcal{H}\rangle } can be differentiated with respect to these paramters, the extrema of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\mathcal{H}\rangle } can be found using the following equation.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\langle\mathcal{H}\rangle}{\partial\alpha}=\frac{\partial\langle\mathcal{H}\rangle}{\partial\beta}=\frac{\partial\langle\mathcal{H}\rangle}{\partial\gamma}=0 }
The absolute minimum of the expectation value of the Hamiltonian obtained by this method correspond to the upper bound on the ground state energy. The other relative, extrema corresponds to excited states.
Spin
Spin 1/2 Angular Momentum
The angular momentum of a stationary spin 1/2 particle is found to be quantized to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm\frac{\hbar}{2}} regardless of the direction of the axis chosen to measure the angular momentum. There is a vector operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{\overrightarrow{S}}=(S_{x}, S_{y}, S_{z})} when projected along an arbitrary axis satisfies the following equations:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{m}|\hat{m}\uparrow\rangle = \dfrac{\hbar}{2}|\hat{m}\uparrow\rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{m}|\hat{m}\downarrow\rangle = \dfrac{-\hbar}{2}|\hat{m}\downarrow\rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\downarrow\rangle} form a complete basis, which means that any state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{n}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{n}\downarrow\rangle} can be expanded as a linear combination of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\downarrow\rangle} .
The spin operator obeys the standard angular momentum commutation relations
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [S_{\mu}, S_{\nu}]=i\hbar\epsilon_{\mu\nu\lambda}S_{\lambda}\Rightarrow [S_{x}, S_{z}]=-i\hbar S_{y}}
The most commonly used basis is the one which diagonalizes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot \hat{z} =S_{z}} .
By acting on the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{z}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{z}\downarrow\rangle} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{z}} , we find
Now by acting to the left with another state, we can form a 2x2 matrix.
where is the z Pauli spin matrix. Repeating the steps (or applying the commutation relations), we can solve for the x and y components.
Properties of the Pauli Spin Matrices
Each Pauli matrix squared produces the unity matrix
The commutation relation is as follows
and the anticommutator relation
For example, if
Then,
The above equation is true for 1/2 spins only!!
In general,
Finally, any 2x2 matrix can be written in the form
for infinitesimal
Note that using the previous developed formulas, we find that
To this order in :
for finite (correct for all orders)
Addition of angular momenta
6.1. Formalism
Total angular momentum is defined as
where Hilbert space size is .
We have the following commutation relations:
And consequently,
However, . Therefore, to construct a basis, one can not take a direct product between the set of eigenkets of and those of . For example,
assume two spin 1/2 particles with basis . These states are eigenstates of , but are they eigenstates of and ?
Let us see what happens with the state :
define
Now
Also,
Which means that is not an eigenstate of . Similarly, it can be shown that the other three states are also not eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!J^2}
. As a result, there are two
choices for sets of base kets which can be used:
1. The simultaneous eigenkets of , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_2^2}
, , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!J_{2z}}
, denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 j_2 m_1 m_2\rangle}
. These four operators commute with each other, and they operate on the base kets
according to:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1,2}^2|j_1 j_2 m_1 m_2\rangle = \hbar_2 j_{1,2}(j_{1,2} + 1)|j_1 j_2 m_1 m_2\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\; (6.1.5)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1z,2z}|j_1 j_2 m_1 m_2\rangle = \hbar m_{1,2}|j_1 j_2 m_1 m_2\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad (6.1.6)}
2. The simultaneous eigenkets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!J^2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1^2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_2^2} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_z} , denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m j_1 j_2\rangle} . These four operators operate on the base kets according to:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J^2|j m j_1 j_2\rangle = \hbar^2 j(j + 1)|j m j_1 j_2\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\;\;\;\; (6.1.7)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{z}|j m j_{1} j_{2}\rangle=\hbar m |j m j_{1} j_{2}\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\;\;\;\;\ (6.1.8)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1,2}^2|j m j_{1} j_{2}\rangle=\hbar^2 j_{1,2}(j_{1,2}+1) |j m j_{1} j_{2}\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\;\ (6.1.9)}
6.2. Clebsch-Gordan Coefficients
Now that we have constructed two different bases of eigenkets, it is imperative to devise a way such that eigenkets of one basis may be written as
linear combinations of the eigenkets of the other basis. To achieve this, we write:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m j_1 j_2\rangle = \sum_{m_1,m_2}|j_1 j_2 m_1 m_2\rangle\langle j_1 j_2 m_1 m_2|j m j_1 j_2\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\ (6.2.1) }
In above, we have used the completeness of the basis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 j_2 m_1 m_2\rangle} , given by:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m_1,m_2}|j_1 j_2 m_1 m_2\rangle\langle j_1 j_2 m_1 m_2| = 1 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad\;\;\; (6.2.2)}
The coefficients Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 j_2 m_1 m_2|j m j_1 j_2\rangle} are called Clebsch-Gordon coefficients, which have the following properties, giving rise to two
"selection rules":
1. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \neq m_1 + m_2} , then the coefficients vanish.
Proof: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \because J_z = J_{1z} + J_{2z}} , we get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_z - J_{1z} - J_{2z})|j m j_1 j_2\rangle = 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \langle j_1 j_2 m_1 m_2|(J_z - J_{1z} - J_{2z})|j m j_1 j_2\rangle = 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \therefore (m - m_1 - m_2)\langle j_1 j_2 m_1 m_2|j m j_1 j_2 \rangle = 0 } . Q.E.D.
2. The coefficients vanish, unless Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 - j_2| \le j \le j_1 + j_2 }
This follows from a simple counting argument. Let us assume, without any loss of generality, that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! j_1 > j_2 } . The dimensions of the two bases should
be the same. If we count the dimensions using the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 j_2 m_1 m_2\rangle } states, we observe that for any value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! j } , the values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! m } run from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! -j} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! j } .
Therefore, for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! j_1 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! j_2 } , the number of eigenkets is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! (2j_1 + 1)(2j_2 + 1) } . Now, counting the dimensions using the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m j_1 j_2 \rangle } eigenkets, we
observe that, again, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! m } runs from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! -j } to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! j } . Therefore, the number of dimensions is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = \sum_a^b (2j + 1) } . It is easy to see that for
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! a = j_1 - j_2 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \! b = j_1 + j_2, N = (2j_1 + 1)(2j_2 +1)} .
Further, it turns out that, for fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!j_1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!j_2} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!j} , coefficients with different values for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!m_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!m_2} are related to each other through recursion
relations. To derive these relations, we first note that:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{\pm}|j m j_1 j_2\rangle = \sqrt{(j \mp m)(j \pm m + 1)}\hbar |j m \pm 1 j_1 j_2\rangle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\;\ (6.2.3) }
The Clebsch-Gordan coefficients form a unitary matrix, and by convention, they are all taken real. Any real unitary matrix is orthogonal, as we study
below.
6.3. Orthogonality of Clebsch-Gordon Coefficients
Using the additon of angular momentum, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 m_1 j_2 m_2 \rangle } where there are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!(2j_1+1)(2j_2+1)} states, one can get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle | j m j_1 j_2 \rangle } where , the last of which is an eigenvector for etc.
where are the Clebsch-Gordon Coefficients. CG's are real and the following is convention:
is positive and there is the following symmetry:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 m_1 j_2 m_2 |j m j_1 j_2 \rangle = (-1)^{j_1 +j_2 -j} \langle j_1, -m_1, j_2, -m_2 |j, -m, j_1, j_2 \rangle}
If we put the coefficients into a matrix, it is real and unitary, meaning Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j m j_1 j_2 |j_1 m_1 j_2 m_2 \rangle = \langle j_1 m_1 j_2 m_2 |j m j_1 j_2 \rangle ^*}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle | j_1 m_1 j_2 m_2 \rangle = \sum_{j,m} |j m j_1 j_2 \rangle \langle j m j_1 j_2 |j_1 m_1 j_2 m_2 \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\uparrow_1 \downarrow_2 \rangle = \dfrac{1}{\sqrt{2}}(|10 \rangle + |00 \rangle )}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\downarrow_1 \uparrow_2 \rangle = \dfrac{1}{\sqrt{2}}(|10 \rangle - |00 \rangle )}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{jm}\langle j_1 m'_1 j_2 m'_2|jmj_1 j_2\rangle \langle jmj_1 j_2 | j_1 m_1 j_2 m_2\rangle = \delta_{m_1 m'_1} \delta_{m_2 m'_2} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m_1 m_2}\langle j m j_1 j_2|j_1 m_1 j_2 m_2\rangle \langle j_1 m_1 j_2 m_2 | j' m' j_1 j_2\rangle = \delta_{j j'} \delta_{m m'} }
Hydrogen atom with spin orbit coupling given by the following hamiltonian
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H'=\dfrac{c^2}{2m^2 c^2 r^3}\overrightarrow{L}\cdot\overrightarrow{S}}
Recall, the atomic spectrum for bound states
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n = \dfrac{-e^2}{2a_o}\dfrac{1}{n^2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ; n=1, 2, 3, ...}
The ground state, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1s\rangle} , is doubly degenerate: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{\uparrow\downarrow}{1s}}
First excited state is 8-fold degenerate: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{\uparrow\downarrow}{1s}\dfrac{\uparrow\downarrow}{}\dfrac{\uparrow\downarrow}{2p}\dfrac{\uparrow\downarrow}{}}
nth state is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2n^2} fold degenerate
We can break apart the angular momentum and spin into its x, y, z-components
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{L}\cdot\overrightarrow{S} = L_x S_x + L_y S_y + L_z S_z }
Define lowering and raising operators
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow L_\pm = L_x \pm iL_y}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow S_\pm = S_x \pm iS_y}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{L}\cdot\overrightarrow{S} = L_z S_z + \dfrac{1}{2} L_{+} S_{-} + \dfrac{1}{2} L_{-} S_{+} }
For the ground state, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (|1s, \uparrow\rangle, |1s, \downarrow\rangle )} , nothing happens. Kramer's theorem protects the double degeneracy.
For the first excited state, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (|2s, \uparrow\rangle, |2s, \downarrow\rangle )} , once again nothing happens.
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (|2p, \uparrow\rangle, |2p, \downarrow\rangle )} , there is a four fold degeneracy.
We can express the solutions in matrix form
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \begin{array}{llllll} \dfrac{\hbar^2}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \dfrac{\hbar^2}{2} \end{array} \right)}
But there is a better and more exact solution, which we can solve for by adding the momenta first.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{L}\cdot\overrightarrow{S} = \dfrac{1}{2} (\overrightarrow{L} + \overrightarrow{S})^2 -\dfrac{1}{2}\overrightarrow{L^2} -\dfrac{1}{2}\overrightarrow{S^2} = \dfrac{1}{2}(J^2 -L^2 - S^2)}
add the angular momenta:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1s\rangle : l=0, s=\dfrac{1}{2}: 0\otimes \dfrac{1}{2}= \dfrac{1}{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2s\rangle : l=0, s=\dfrac{1}{2}: 0\otimes \dfrac{1}{2}= \dfrac{1}{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2p_m, 0 \rangle : l=1, s=\dfrac{1}{2}: 1\otimes \dfrac{1}{2}= \dfrac{3}{2} \oplus \dfrac{1}{2}}
So that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{L}\cdot\overrightarrow{S} |j=\dfrac{3}{2}, m, l=1, s=\dfrac{1}{2} \rangle =\dfrac{1}{2} (\hbar^2\dfrac{3}{2}\dfrac{5}{2}-2 \hbar^2 - \dfrac{3}{4} \hbar^2) |j=\dfrac{3}{2}, m, l=1, s=\dfrac{1}{2} \rangle = \dfrac{\hbar^2}{2} | j=\dfrac{3}{2}, m, l=1, s=\dfrac{1}{2} \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{L}\cdot\overrightarrow{S} |j=\dfrac{1}{2}, m, l=1, s=\dfrac{1}{2} \rangle =\dfrac{-\hbar^2}{2} | j=\dfrac{1}{2}, m, l=1, s=\dfrac{1}{2} \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=\dfrac{3}{2}, m= \dfrac{3}{2}, l=1, s=\dfrac{1}{2} \rangle = |l=1, m_l =1 \rangle |s=\dfrac{1}{2}, m_s = \dfrac{1}{2} \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j= \dfrac{3}{2}, m= \dfrac{3}{2} \rangle = |m_l =1 \rangle |m_s = \dfrac{1}{2} \rangle }
Define J_
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_ |\dfrac{3}{2}, \dfrac{1}{2} \rangle = (L_+ S_)|1 \rangle |\dfrac{1}{2} \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \sqrt{\dfrac{3}{2} \dfrac{5}{2}- \dfrac{3}{2}\dfrac{1}{2}} |\dfrac{3}{2}, \dfrac{1}{2} \rangle = \hbar \sqrt{2}|0 \rangle |\dfrac{1}{2} \rangle + \hbar \sqrt{\dfrac{1}{2} \dfrac{3}{2} + \dfrac{1}{4}}|1, -\dfrac{1}{2} \rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{3} |\dfrac{3}{2}, \dfrac{1}{2} \rangle = \sqrt{2}|0 \rangle |\dfrac{1}{2} \rangle + |1, -\dfrac{1}{2} \rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{3}{2}, \dfrac{1}{2} \rangle = \sqrt{\dfrac{2}{3}}|0 \rangle |\dfrac{1}{2} \rangle + \sqrt{\dfrac{1}{3}}|1 \rangle | - \dfrac{1}{2} \rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{3}{2}, \dfrac{-1}{2} \rangle = \sqrt{\dfrac{2}{3}}|0 \rangle |\dfrac{-1}{2} \rangle + \sqrt{\dfrac{1}{3}}|-1 \rangle | \dfrac{1}{2} \rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{3}{2}, \dfrac{-3}{2} \rangle = |-1 \rangle | - \dfrac{1}{2} \rangle}
Can express as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=\dfrac{1}{2}, m =\dfrac{1}{2} \rangle = \alpha |0 \rangle |\dfrac{1}{2} \rangle + \beta |1 \rangle |- \dfrac{1}{2} \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=\dfrac{1}{2}, m = -\dfrac{1}{2} \rangle = \alpha ' |0 \rangle |-\dfrac{1}{2} \rangle + \beta ' |-1 \rangle | \dfrac{1}{2} \rangle }
When we project these states on the previously found states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \langle \dfrac{3}{2} \dfrac{1}{2} | \dfrac{1}{2} \dfrac{1}{2} \rangle =0\right) } we find that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = -\dfrac{1}{\sqrt{3}}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = \sqrt{\dfrac{2}{3}}}