Normalization constant: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:


Now let's evaluate <math>Z=\langle N|N \rangle ^{-1}</math> from <math>(\bold 1)</math>
Now let's evaluate <math>Z=\langle N|N \rangle ^{-1}</math> from <math>(\bold 1)</math>
<math>Z^{-1}=1+ \left ( \sum_{p=1}^{+\infty}\lambda ^p \sum_{m_{1}}'...\sum_{m_{p}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}| \right ) \bold .</math>
<math> \bold . \left ( \sum_{q=1}^{+\infty}\lambda ^q \sum_{m'_{1}}'...\sum_{m'_{q}}' |m'_{1} \rangle \frac {1}{E_{n}- \epsilon _{m'_{1}}} \langle m'_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle \right )</math>

Revision as of 16:26, 18 April 2009

Using Brillouin-Wigner perturbation theory we will proof that

In this theory, the exact state and exact energy can be written as follows:

Taking the derivative of with respect to, using the chain rule ,we get:

From this we can solve for

Now let's evaluate from