Phy5645:Problem 4.1 Solution: Difference between revisions
Jump to navigation
Jump to search
DavidMorris (talk | contribs) (Began solution to Problem 4.1) |
DavidMorris (talk | contribs) m (→Solution: Fixed parenthesis) |
||
Line 10: | Line 10: | ||
& = \sum_{n=0}^\infty \left ( \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} \cdot \sum_{m=0}^n \binom{n}{m} x^{n-m}a^m \right ) \\ | & = \sum_{n=0}^\infty \left ( \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} \cdot \sum_{m=0}^n \binom{n}{m} x^{n-m}a^m \right ) \\ | ||
& = \sum_{n=0}^\infty \left ( \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} \cdot \sum_{m=0}^n \frac{n \, (n-1) \cdots (n-(m-1)}{m!} x^{n-m}a^m \right ) \\ | & = \sum_{n=0}^\infty \left ( \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} \cdot \sum_{m=0}^n \frac{n \, (n-1) \cdots (n-(m-1))}{m!} x^{n-m}a^m \right ) \\ | ||
& = \sum_{n=0}^\infty \left ( \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} \cdot \sum_{m=0}^n \frac{a^m}{m!} \frac{d^m}{dx^m} x^n \right ) \\ | & = \sum_{n=0}^\infty \left ( \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} \cdot \sum_{m=0}^n \frac{a^m}{m!} \frac{d^m}{dx^m} x^n \right ) \\ |
Revision as of 01:26, 15 October 2009
Problem
Prove that there is a unitary operator , which is a function of , such that for some wavefunction , .
Solution
So,
It is now shown that is unitary: