|
|
Line 18: |
Line 18: |
| <math>\text{= -}\frac{eB}{2c}(-i\hbar )+\frac{eB}{2c}(i\hbar )</math> | | <math>\text{= -}\frac{eB}{2c}(-i\hbar )+\frac{eB}{2c}(i\hbar )</math> |
| <math>\text{=}i\hbar \frac{eB}{c}</math> | | <math>\text{=}i\hbar \frac{eB}{c}</math> |
| | |
|
| |
|
| *The hamiltonian fot the system is; | | *The hamiltonian fot the system is; |
An electron moves in magnetic field which is in the z direction,
, and the Landau gauge is
- Evaluate
![{\displaystyle \left[{\Pi _{x},\Pi _{y}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b4928dea1338d256696eaba42bf2258153205e13)
- Using the hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.
- According to the Ladau gauge,

- The hamiltonian fot the system is;
If we define first two terms as
, and the last one as
,
The hamiltonian will be
.
Then the hamiltonian will look like
where
and
.
As we know,
So now we can write that;