Delta Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:


<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int g\delta^3(\mathbf{r}')e^{-i\mathbf{q}\cdot\mathbf{r}'}d^3r'=\frac{mg}{2\pi\hbar^2}</math>
<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int g\delta^3(\mathbf{r}')e^{-i\mathbf{q}\cdot\mathbf{r}'}d^3r'=\frac{mg}{2\pi\hbar^2}</math>
and the differential cross section is
<math>\sigma(\theta)=\frac{m^2 g^2}{4\pi^2\hbar^4}</math>
   
   




i\hbar\frac{\partial \psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r},t
i\hbar\frac{\partial \psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r},t

Revision as of 21:38, 30 November 2009

Problem

Calculate the Born approximation to the differential and total cross sections for a particle of mass m off the -function potential .

Solution:

In Born approximation,

where with and are the wave vectors of the incident and scattered waves, respectively. Then

and the differential cross section is


i\hbar\frac{\partial \psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r},t