Phy5645/AngularMomentumProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:


:<math>P_1=|<1,1|\psi>|^2=|\sqrt{1/5}<1,1|1,1>|^2=1/5</math>
:<math>P_1=|<1,1|\psi>|^2=|\sqrt{1/5}<1,1|1,1>|^2=1/5</math>
:Now we will calculate the uncertainties <math>\Delta L_x</math> and <math>\Delta L_y</math> and the product <math>\Delta L_x \Delta L_y</math>
:After measuring <math>l_z=-\hbar</math> the system will be in the eigenstate <math>|lm>=|1,-1></math>, that is <math>\psi(\theta,\phi)=Y_1,_-1(\theta,|phi)</math>.  We will first calculate the expectation values of <math>L_x, L_y, L^2_x, L^2_y</math> using <math>|1,-1></math>.  Symmetry requires <math><1,-1|L_x|1,-1>=<1,-1|L_y|1,-1>=0</math>.  Using the relation <math>l-1</math> and <math>m=-1</math>;
:<math><L^2_x>=<L^2_y>=1/2[<L^2>-<L^2_z>]=\hbar^2/2[l(l+1)-m^2]=\hbar^2/2</math>
:<math>\Delta L_x=\sqrt{<L^2_x>}=\hbar/\sqrt{2}=\Delta L_y</math>
:Therefore;
:<math>\Delta L_x \Delta L_y=\sqrt{<L^2_x><L^2_y>}=\hbar^2/2</math>

Revision as of 22:32, 30 November 2009

Posted by Group 6:

A system is initally in the state:
Let us now find the value of the opperator acting on the system as well as the probability of finding each value.
We may first rewright the notation for the system as follows;
acting on the system produces three values for ;
The probablity for finding the value is;
This can easially be verified since;
and
The probablites of measuring are give as follows;
Now we will calculate the uncertainties and and the product
After measuring the system will be in the eigenstate , that is . We will first calculate the expectation values of using . Symmetry requires . Using the relation and ;
Therefore;