Phy5645/Problem 1D sample: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:


:<math>
:<math>
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z) </math>
\begin{array}
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\
& + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z)  
\end{array}
</math>




Line 26: Line 30:


:<math>
:<math>
\begin{array}
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x)
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x)
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y)  
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) \\
-\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z)  
& -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z)  
= E   
= E   
\end{array}
</math>
</math>


Perfectly we can separate the right hand side in three parts, where only one depends of x, only one of y and only one of z. Then each of these parts must be equal to a constant. So:
Perfectly we can separate the right hand side in three parts, where only one depends of <math> x \!</math>, only one of <math> y \!</math> and only one of <math> z \!</math>. Then each of these parts must be equal to a constant. So:


:<math>
:<math>
Line 43: Line 49:
-\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E_z  </math>
-\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E_z  </math>


where E_x, E_y and E_z are constant and <math> E = E_x+E_y+E_z \!</math>
where <math> E_x \!</math>, <math> E_y \!</math> and <math> E_z \!</math> are constant and <math> E = E_x+E_y+E_z \!</math>




Hence the three-dimensional problem has been divided in three one-dimensional problems where the total energy E is the sum of the energies <math> E_x \!</math>, <math> E_y \!</math> and <math> E_z \!</math> in each dimension.
Hence the three-dimensional problem has been divided in three one-dimensional problems where the total energy <math> E \!</math> is the sum of the energies <math> E_x \!</math>, <math> E_y \!</math> and <math> E_z \!</math> in each dimension.

Revision as of 00:41, 5 December 2009

(Submitted by team 1. Based on problem 3.19 in Schaum's Theory and problems of Quantum Mechanics)

Consider a particle of mass m in a three dimensional potential: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,y,z) = X(x)+Y(y)+Z(z)\!}

Using the Schroedinger's equation show that we can treat the problem like three independent one-dimensional problems. Relate the energy of the three-dimensional state to the effective energies of one-dimensional problem.

______________________________________________________________________________________________________________________________________

The Schroedinger's equation takes the form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z)}


Assuming that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\!} can be write like:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z) \!}


So,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array} -\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ & + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z) \end{array} }


Dividing by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y,z) \!}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array} -\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) -\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) \\ & -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E \end{array} }

Perfectly we can separate the right hand side in three parts, where only one depends of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \!} , only one of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \!} and only one of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z \!} . Then each of these parts must be equal to a constant. So:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) = E_x }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) = E_y }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E_z }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_x \!} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_y \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_z \!} are constant and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = E_x+E_y+E_z \!}


Hence the three-dimensional problem has been divided in three one-dimensional problems where the total energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \!} is the sum of the energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_x \!} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_y \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_z \!} in each dimension.