Exponential Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Using the Born approximation, find the differential cross section for the next exponential potential: <math> V(r)= -V_0 e^{-\frac{r}{a}} </math> ---------- If the potential V is spheric...)
 
No edit summary
Line 1: Line 1:
Using the Born approximation, find the differential cross section for the next exponential potential:
Using the Born approximation, find the differential cross section for the next exponential potential:


<math> V(r)= -V_0 e^{-\frac{r}{a}} </math>
::<math> V(r)= -V_0 e^{-\frac{r}{a}} </math>
 


----------
----------
Line 13: Line 14:
So,
So,


: <math> f_{born}(\theta) = \frac{-2mV_0}{\hbar^2 q} \int_0^\infin r' sin(ar') e^{-\frac{r'}{a}} dr' </math>
: <math> f_{born}(\theta) = \frac{-2mV_0}{\hbar^2 q} \int_0^\infin r' sin(qr') e^{-\frac{r'}{a}} dr' </math>
 
 
Solving this integral by parts,
 
 
: <math>
\begin{align}
f_{born}(\theta)
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q}  \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr'    \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin  e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\
 
\end{align}
</math>
 
 
 
: <math> f_{born}(\theta) = \frac{4mV_0}{\hbar^2 a} (\frac{1}{ \frac{1}{a^2} +q^2 })^2 </math>
 
 
So, the differential cross section,
 
:

Revision as of 19:54, 5 December 2009

Using the Born approximation, find the differential cross section for the next exponential potential:



If the potential V is spherical symmetric we can use the equation:



So,


Solving this integral by parts,




So, the differential cross section,