Exponential Potential Born Approximation: Difference between revisions
Jump to navigation
Jump to search
(New page: Using the Born approximation, find the differential cross section for the next exponential potential: <math> V(r)= -V_0 e^{-\frac{r}{a}} </math> ---------- If the potential V is spheric...) |
No edit summary |
||
Line 1: | Line 1: | ||
Using the Born approximation, find the differential cross section for the next exponential potential: | Using the Born approximation, find the differential cross section for the next exponential potential: | ||
<math> V(r)= -V_0 e^{-\frac{r}{a}} </math> | ::<math> V(r)= -V_0 e^{-\frac{r}{a}} </math> | ||
---------- | ---------- | ||
Line 13: | Line 14: | ||
So, | So, | ||
: <math> f_{born}(\theta) = \frac{-2mV_0}{\hbar^2 q} \int_0^\infin r' sin( | : <math> f_{born}(\theta) = \frac{-2mV_0}{\hbar^2 q} \int_0^\infin r' sin(qr') e^{-\frac{r'}{a}} dr' </math> | ||
Solving this integral by parts, | |||
: <math> | |||
\begin{align} | |||
f_{born}(\theta) | |||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr' \\ | |||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\ | |||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ] \\ | |||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\ | |||
\end{align} | |||
</math> | |||
: <math> f_{born}(\theta) = \frac{4mV_0}{\hbar^2 a} (\frac{1}{ \frac{1}{a^2} +q^2 })^2 </math> | |||
So, the differential cross section, | |||
: |
Revision as of 19:54, 5 December 2009
Using the Born approximation, find the differential cross section for the next exponential potential:
If the potential V is spherical symmetric we can use the equation:
So,
Solving this integral by parts,
So, the differential cross section,