Exponential Potential Born Approximation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr' \\ | &= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr' \\ | ||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\ | &= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\ | ||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ] \\ | &= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ]_{_0}^{^\infin} \\ | ||
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\ | &= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\ | ||
Line 37: | Line 37: | ||
So, the differential cross section, | So, the differential cross section, | ||
:<math> \frac{d\sigma}{d \theta} = |f_{born}(\theta) |^2 = \frac{16m^2V_0^2}{\hbar^4 a^2} (\frac{1}{ \frac{1}{a^2} +q^2 })^4 </math> | |||
: | : |
Revision as of 20:01, 5 December 2009
Using the Born approximation, find the differential cross section for the next exponential potential:
If the potential V is spherical symmetric we can use the equation:
So,
Solving this integral by parts,
So, the differential cross section,