Exponential Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q}  \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr'    \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q}  \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr'    \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin  e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin  e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ]_{_0}^{^\infin} \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\


Line 37: Line 37:


So, the differential cross section,
So, the differential cross section,
:<math> \frac{d\sigma}{d \theta}    = |f_{born}(\theta) |^2  =  \frac{16m^2V_0^2}{\hbar^4 a^2} (\frac{1}{ \frac{1}{a^2} +q^2 })^4  </math>


:
:

Revision as of 20:01, 5 December 2009

Using the Born approximation, find the differential cross section for the next exponential potential:



If the potential V is spherical symmetric we can use the equation:



So,


Solving this integral by parts,




So, the differential cross section,