Commutation Problem: Difference between revisions
Jump to navigation
Jump to search
(New page: Let <math> f(x) \!</math> be a differentiable function, using <math>[x,p_{x}]=i\hbar</math>, prove: (a) <math>[x,p^{2}_{x}f(x) ]=2i\hbar p_{x} f(x)</math> (b) <math>[x,p_{x}f(x)p_{x}]=i...) |
No edit summary |
||
Line 37: | Line 37: | ||
&=i\hbar f(x)p_{x} + p_{x}[x,p_{x}]f(x) + p_{x}[x,f(x)]p_{x} \\ | &=i\hbar f(x)p_{x} + p_{x}[x,p_{x}]f(x) + p_{x}[x,f(x)]p_{x} \\ | ||
&=i\hbar [f(x)p_{x}+p_{x}f(x)] | &=i\hbar [f(x)p_{x}+p_{x}f(x)] | ||
\end{align} | |||
</math> | |||
(c) | |||
<math> | |||
\begin{align} | |||
&[p_{x},p^{2}_{x}f(x)] \\ | |||
&=[p_{x},p^{2}_{x}]f(x)+p^{2}_{x}[p_{x},f(x)] \\ | |||
&= p^{2}_{x} [p_{x},f(x)] | |||
\end{align} | |||
</math> | |||
Now, consider | |||
<math> | |||
\begin{align} | |||
&[p_{x},f(x)]\psi(x) \\ | |||
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\ | |||
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx} \\ | |||
&=-i\hbar \frac{df}{dx}\psi(x) | |||
\end{align} | |||
</math> | |||
So | |||
<math>[p_{x},f(x)] | |||
=-i\hbar \frac{df}{dx} | |||
</math> | |||
and so | |||
<math>[p_{x},p^{2}_{x}f(x)] | |||
=-i\hbar p^{2}_{x}\frac{df}{dx} | |||
</math> | |||
(d) | |||
<math> | |||
\begin{align} | |||
&[p_{x},p_{x}f(x)p_{x}] \\ | |||
&=p_{x}f[p_{x},p_{x}]+[p_{x},p_{x}f]p_{x} \\ | |||
&=p_{x}[p_{x},f]p_{x}+[p_{x},p_{x}]fp_{x} \\ | |||
&=-i\hbar p_{x}\frac{df}{dx}p_{x} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:25, 5 December 2009
Let be a differentiable function, using , prove:
(a)
(b)
(c)
(d)
sol:
(a)
(b)
(c)
Now, consider
So
and so
(d)