Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
== Example 1 == | == Example 1 == | ||
Consider a particle moving in a potential <math>V(\textbf{r})</math>, (1) Prove the energy density: <math><E>=\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right] | Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the energy density: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x |
Revision as of 15:23, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the energy density: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x