Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
==  Example 1  ==
==  Example 1  ==
Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>,  
Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>,  
where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}<math> is energy flux density:
where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density:

Revision as of 15:57, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density: