Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
== Example 1 == | == Example 1 == | ||
Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>, | Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>, | ||
where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: | where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{hbar^2}{2m}\left(frac{\partial\psi^*}{\partial t}\nabla\psi + frac{\partial\psi}{\partial t}\nabla\psi^*\right) |
Revision as of 16:02, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density: <math>\textbf{S}=-\frac{hbar^2}{2m}\left(frac{\partial\psi^*}{\partial t}\nabla\psi + frac{\partial\psi}{\partial t}\nabla\psi^*\right)