Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 11: Line 11:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)d^3x </math>,
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)d^3x </math>,


<math>\left{\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right} </math>
<math>\left{\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right} </math>,


So:
So:
<math>\iiint\psi^*\nabla\psi d^3x </math>,
<math>\iiint\psi^*\nabla\psi d^3x </math>,

Revision as of 16:41, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,

Failed to parse (syntax error): {\displaystyle \left{\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right} } ,

So: ,