Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)d^3x </math>, | <math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)d^3x </math>, | ||
<math>\left | <math>\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right) </math>, | ||
So: | So: | ||
<math>\iiint\psi^*\nabla\psi d^3x </math>, | <math>\iiint\psi^*\nabla\psi d^3x </math>, |
Revision as of 16:45, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,
,
So: ,