Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
Line 9: Line 9:
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>,  
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>,  
hence:
hence:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)d^3x </math>,
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math>,
 
<math>\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right) </math>,
 
So:
<math>\iiint\psi^*\nabla\psi d^3x </math>,

Revision as of 16:49, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,