Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math> | <math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math> | ||
<math>=-\frac{\hbar^2}{2m}\iiint | <math>=-\frac{\hbar^2}{2m}\iiint\nabla\left(psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*\nabla\psi d^3x</math>, |
Revision as of 16:56, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence:
,