Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Use WKB approximation to estimate energy spectrum for Hydrogen atom.
Use WKB approximation to estimate energy spectrum for Hydrogen atom.
Hint: <math>\text{use the relation  r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>
Hints:  
 
<math>\text{use the relation  r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>
and <math>\text{ the definition  }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}
 
</math>
</math>
----
----
Line 22: Line 26:
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math>
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math>


<math>\text{ use definition let }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}</math>
<math>\text{ the definition  }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}</math>


<math>\sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar </math>
<math>\sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar </math>
Line 41: Line 45:


<math>\frac{4\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}{2me^{4}}=\frac{1}{-E}\text{ }</math>
<math>\frac{4\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}{2me^{4}}=\frac{1}{-E}\text{ }</math>
Then if we finally pull out E,


<math>\text{E=}\frac{-me^{4}}{2\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}</math>
<math>\text{E=}\frac{-me^{4}}{2\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}</math>

Revision as of 20:32, 9 December 2009

Use WKB approximation to estimate energy spectrum for Hydrogen atom. Hints:

and



The approximation is:

where r1 and r2 are turning points in this case.

if we do this substitution:

Then if we finally pull out E,