Phy5645/Hydrogen Atom WKB: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Use WKB approximation to estimate energy spectrum for Hydrogen atom. | Use WKB approximation to estimate energy spectrum for Hydrogen atom. | ||
Hints: | |||
<math>\text{use the relation r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math> | |||
and <math>\text{ the definition }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2} | |||
</math> | </math> | ||
---- | ---- | ||
Line 22: | Line 26: | ||
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math> | <math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math> | ||
<math>\text{ | <math>\text{ the definition }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}</math> | ||
<math>\sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar </math> | <math>\sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar </math> | ||
Line 41: | Line 45: | ||
<math>\frac{4\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}{2me^{4}}=\frac{1}{-E}\text{ }</math> | <math>\frac{4\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}{2me^{4}}=\frac{1}{-E}\text{ }</math> | ||
Then if we finally pull out E, | |||
<math>\text{E=}\frac{-me^{4}}{2\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}</math> | <math>\text{E=}\frac{-me^{4}}{2\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}</math> |
Revision as of 20:32, 9 December 2009
Use WKB approximation to estimate energy spectrum for Hydrogen atom. Hints:
and
The approximation is:
where r1 and r2 are turning points in this case.
if we do this substitution:
Then if we finally pull out E,