Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 14: | Line 14: | ||
Using Gauss Theorem for the last term: | Using Gauss Theorem for the last term: | ||
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S}</math>, | <math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S}</math>, | ||
with the condition: \lim_{n \to \infty}\psi^*\nable\psi=0</math>, for infinite surface. | with the condition: <math>\lim_{n \to \infty}\psi^*\nable\psi=0</math>, for infinite surface. | ||
Hence:<math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math> | Hence:<math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math> |
Revision as of 20:50, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,
Using Gauss Theorem for the last term: , with the condition: Failed to parse (unknown function "\nable"): {\displaystyle \lim_{n \to \infty}\psi^*\nable\psi=0} , for infinite surface.
Hence: