Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
Hence:<math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math> | Hence:<math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math> | ||
(2):first we find the time derivative of energy density: | |||
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right) | |||
=\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math> |
Revision as of 21:04, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove:(1): the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,
Using Gauss Theorem for the last term: , with the condition: , for infinite surface.
Hence:
(2):first we find the time derivative of energy density: