Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 20: | Line 20: | ||
(2):first we find the time derivative of energy density: | (2):first we find the time derivative of energy density: | ||
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right) | <math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right) | ||
=\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math> | =\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t} | ||
=\frac{\hbar^2}{2m}\left(\nabla\cdot\left(\nabla\psi^*\cdot\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\cdot\nabla\psi\right) - \left(\frac{\partial\psi}{\partial t}\nabla^2\psi^*+\frac{\partial\psi^*}{\partial t}\nabla^2\psi\right)\right)+\frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math> |
Revision as of 21:10, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove:(1): the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,
Using Gauss Theorem for the last term: , with the condition: , for infinite surface.
Hence:
(2):first we find the time derivative of energy density: