Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>, | Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>, | ||
hence: | hence: | ||
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x | <math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math> | ||
=-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*V\psi d^3x</math>, | <math>=-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*V\psi d^3x</math>, | ||
Using Gauss Theorem for the last term: | Using Gauss Theorem for the last term: |
Revision as of 21:11, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove:(1): the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,
Using Gauss Theorem for the last term: , with the condition: , for infinite surface.
Hence:
(2):first we find the time derivative of energy density: ,