|
|
Line 31: |
Line 31: |
| <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>, | | <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>, |
|
| |
|
| So:<math>\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>, | | So:<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>, |
| Hence: | | Hence: |
| <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math> | | <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math> |
Revision as of 21:25, 9 December 2009
Example 1
Consider a particle moving in a potential field
, (1) Prove the average energy equation:
,
where W is energy density, (2) Prove the energy conservation equation:
, where
is energy flux density:
Prove:(1):
the energy operator in three dimensions is:
so the average energy in state
is:
,
Using:
,
hence:
,
Using Gauss Theorem for the last term:
,
with the condition:
, for infinite surface.
Hence:
(2):first we find the time derivative of energy density:
,
,
Using Schrodinger Equations:
,
and,
,
Also the energy flux density is:
,
So:
,
Hence: