Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 31: Line 31:
<math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>,
<math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>,


So:<math>\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>,
So:<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>,
Hence:
Hence:
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>

Revision as of 21:25, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove:(1): the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,

Using Gauss Theorem for the last term: , with the condition: , for infinite surface.

Hence:

(2):first we find the time derivative of energy density: , ,

Using Schrodinger Equations: , and, ,

Also the energy flux density is: ,

So:, Hence: